BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31661870)

  • 21. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Sensors (Basel); 2011; 11(1):207-27. PubMed ID: 22346574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study.
    Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C
    Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training.
    Cai S; Chen Y; Huang S; Wu Y; Zheng H; Li X; Xie L
    Front Neurorobot; 2019; 13():31. PubMed ID: 31214010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.
    Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot.
    Metzger JC; Lambercy O; Califfi A; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R
    J Neuroeng Rehabil; 2014 Nov; 11():154. PubMed ID: 25399249
    [TBL] [Abstract][Full Text] [Related]  

  • 28. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Study on Upper-Limb Rehabilitation Training of Stroke Patients Based on Adaptive Task Level: A Preliminary Study.
    Pan L; Song A; Wang S; Duan S
    Biomed Res Int; 2019; 2019():2742595. PubMed ID: 30915351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated patient-robot assignment for a robotic rehabilitation gym: a simplified simulation model.
    Miller BA; Adhikari B; Jiang C; Novak VD
    J Neuroeng Rehabil; 2022 Nov; 19(1):126. PubMed ID: 36384813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Research on an ankle rehabilitation robot for hemiplegic patients after stroke.
    Sun Z; Mu A; Wang C; Liu Q; Hao F; Wei J; Li W
    Proc Inst Mech Eng H; 2023 Oct; 237(10):1177-1189. PubMed ID: 37706474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive robot mediated upper limb training using electromyogram-based muscle fatigue indicators.
    Thacham Poyil A; Steuber V; Amirabdollahian F
    PLoS One; 2020; 15(5):e0233545. PubMed ID: 32469912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translation of robot-assisted rehabilitation to clinical service: a comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke.
    Huang Y; Lai WP; Qian Q; Hu X; Tam EWC; Zheng Y
    Biomed Eng Online; 2018 Jun; 17(1):91. PubMed ID: 29941043
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces.
    Pomares J; Perea I; GarcĂ­a GJ; Jara CA; Corrales JA; Torres F
    Sensors (Basel); 2011; 11(10):9839-62. PubMed ID: 22163729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-mode adaptive control strategy for a lower limb rehabilitation robot.
    Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T
    Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A preliminary investigation into the design of pressure cushions and their potential applications for forearm robotic orthoses.
    Alavi N; Zampierin S; Komeili M; Cocuzza S; Debei S; Menon C
    Biomed Eng Online; 2017 May; 16(1):54. PubMed ID: 28482892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.