BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31661888)

  • 1. The Influence of the Degradation of Tetracycline by Free Radicals from Riboflavin-5'-Phosphate Photolysis on Microbial Viability.
    Huang ST; Lee SY; Wang SH; Wu CY; Yuann JP; He S; Cheng CW; Liang JY
    Microorganisms; 2019 Oct; 7(11):. PubMed ID: 31661888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue light induced free radicals from riboflavin in degradation of crystal violet by microbial viability evaluation.
    Liang JY; Yuann JP; Hsie ZJ; Huang ST; Chen CC
    J Photochem Photobiol B; 2017 Sep; 174():355-363. PubMed ID: 28822287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of blue or violet light on the inactivation of Staphylococcus aureus by riboflavin-5'-phosphate photolysis.
    Wong TW; Cheng CW; Hsieh ZJ; Liang JY
    J Photochem Photobiol B; 2017 Aug; 173():672-680. PubMed ID: 28715781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of 462 nm Light-Emitting Diode on the Inactivation of
    Huang ST; Wu CY; Lee NY; Cheng CW; Yang MJ; Hung YA; Wong TW; Liang JY
    J Clin Med; 2018 Sep; 7(9):. PubMed ID: 30213146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of Pathogens via Visible-Light Photolysis of Riboflavin-5'-Phosphate.
    Cheng CW; Lee SY; Chen TY; Yuann JP; Chiu CM; Huang ST; Liang JY
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35467652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of blue light-induced reactive oxygen species from flavin mononucleotide on inactivation of E. coli.
    Liang JY; Cheng CW; Yu CH; Chen LY
    J Photochem Photobiol B; 2015 Feb; 143():82-8. PubMed ID: 25617617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the influence of reactive oxygen species produced from riboflavin-5'-phosphate by blue or violet light on the inhibition of WiDr colon cancer cells.
    Chiu CM; Lee SY; Chen PR; Zhan SQ; Yuann JP; Huang ST; Wu MF; Cheng CW; Chang YC; Liang JY
    Photodiagnosis Photodyn Ther; 2023 Dec; 44():103810. PubMed ID: 37748698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue light induced reactive oxygen species from flavin mononucleotide and flavin adenine dinucleotide on lethality of HeLa cells.
    Yang MY; Chang CJ; Chen LY
    J Photochem Photobiol B; 2017 Aug; 173():325-332. PubMed ID: 28633062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: kinetics and mechanism.
    Niu J; Li Y; Wang W
    Chemosphere; 2013 Sep; 92(11):1423-9. PubMed ID: 23618345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Component Flavin-Dependent Riboflavin Monooxygenase Degrades Riboflavin in Devosia riboflavina.
    Kanazawa H; Shigemoto R; Kawasaki Y; Oinuma KI; Nakamura A; Masuo S; Takaya N
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29610214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the effect of reactive oxygen species induced by violet and blue light from oxytetracycline on the deactivation of Escherichia coli.
    Cheng CW; Lee SY; Chen TY; Yang MJ; Yuann JP; Chiu CM; Huang ST; Liang JY
    Photodiagnosis Photodyn Ther; 2022 Sep; 39():102917. PubMed ID: 35597444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue light induced free radicals from riboflavin on E. coli DNA damage.
    Liang JY; Yuann JM; Cheng CW; Jian HL; Lin CC; Chen LY
    J Photochem Photobiol B; 2013 Feb; 119():60-4. PubMed ID: 23347966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous multivariate phototransformation kinetics of dissociated tetracycline: implications for the photochemical fate in surface waters.
    Ge L; Dong Q; Halsall C; Chen CL; Li J; Wang D; Zhang P; Yao Z
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15726-15732. PubMed ID: 29574648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 1. Kinetic evidence for cooperative effects associated with the binding of inorganic phosphate and the 5'-phosphate moiety of the cofactor.
    Murray TA; Swenson RP
    Biochemistry; 2003 Mar; 42(8):2307-16. PubMed ID: 12600198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria.
    Jiao S; Zheng S; Yin D; Wang L; Chen L
    Chemosphere; 2008 Sep; 73(3):377-82. PubMed ID: 18617218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photolytic and photocatalytic degradation of tetracycline: Effect of humic acid on degradation kinetics and mechanisms.
    Li S; Hu J
    J Hazard Mater; 2016 Nov; 318():134-144. PubMed ID: 27420385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.
    Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M
    FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement by laser flash photolysis of intraprotein electron transfer in a rat neuronal nitric oxide synthase.
    Feng C; Tollin G; Hazzard JT; Nahm NJ; Guillemette JG; Salerno JC; Ghosh DK
    J Am Chem Soc; 2007 May; 129(17):5621-9. PubMed ID: 17425311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of active oxidative species on TiO2 photocatalysis of tetracycline and optimization of photocatalytic degradation conditions.
    Luo Z; Li L; Wei C; Li H; Chen D
    J Environ Biol; 2015 Jul; 36 Spec No():837-43. PubMed ID: 26387359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO
    Soltani T; Tayyebi A; Lee BK
    J Environ Manage; 2019 Feb; 232():713-721. PubMed ID: 30529413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.