BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31662008)

  • 1. Evaluation of Juvenile Animal Studies for Pediatric CNS-Targeted Compounds: A Regulatory Perspective.
    van der Laan JW; van Malderen K; de Jager N; Duarte D; Egger GF; Lavergne F; Roque CG; Vieira I; Wiesner L; Carleer J
    Int J Toxicol; 2019; 38(6):456-475. PubMed ID: 31662008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The need for juvenile animal studies--a critical review.
    Soellner L; Olejniczak K
    Regul Toxicol Pharmacol; 2013 Feb; 65(1):87-99. PubMed ID: 23108189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CDER Experience With Juvenile Animal Studies for CNS Drugs.
    Fisher JE; Ravindran A; Elayan I
    Int J Toxicol; 2019; 38(2):88-95. PubMed ID: 30739550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Juvenile animal studies in the development of pediatric medicines: experience from European medicines and pediatric investigation plans.
    Duarte DM; Silva-Lima B
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):353-8. PubMed ID: 21594973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.
    Swedberg MD
    J Pharmacol Toxicol Methods; 2016; 81():295-305. PubMed ID: 27235786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Juvenile animal toxicity study designs to support pediatric drug development.
    Cappon GD; Bailey GP; Buschmann J; Feuston MH; Fisher JE; Hew KW; Hoberman AM; Ooshima Y; Stump DG; Hurtt ME
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):463-9. PubMed ID: 20025047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrum of effects detected in the rat functional observational battery following oral administration of non-CNS targeted compounds.
    Redfern WS; Strang I; Storey S; Heys C; Barnard C; Lawton K; Hammond TG; Valentin JP
    J Pharmacol Toxicol Methods; 2005; 52(1):77-82. PubMed ID: 15936219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of juvenile animal studies to support oncology medicine development in children.
    Duarte DM
    Reprod Toxicol; 2015 Aug; 56():97-104. PubMed ID: 25998230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of value of juvenile animal toxicity studies for supporting the safety of pediatric oncology phase I trials.
    Visalli T; Bower N; Kokate T; Andrews PA
    Regul Toxicol Pharmacol; 2018 Jul; 96():167-177. PubMed ID: 29763632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Juvenile animal studies and pediatric drug development: a European regulatory perspective.
    Carleer J; Karres J
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):254-60. PubMed ID: 21638754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The value of juvenile animal studies "What have we learned from preclinical juvenile toxicity studies? II".
    Bailey GP; Mariƫn D
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):273-91. PubMed ID: 22623019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuropathology Evaluation in Juvenile Toxicity Studies in Rodents: Comparison of Developmental Neurotoxicity Studies for Chemicals With Juvenile Animal Studies for Pediatric Pharmaceuticals.
    Bolon B; Dostal LA; Garman RH
    Toxicol Pathol; 2021 Dec; 49(8):1405-1415. PubMed ID: 34620000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preclinical evaluation of Trichilia catigua extracts on the central nervous system of mice.
    Chassot JM; Longhini R; Gazarini L; Mello JC; de Oliveira RM
    J Ethnopharmacol; 2011 Oct; 137(3):1143-8. PubMed ID: 21801825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An update of juvenile animal studies in the European Union: What do the numbers say?
    Hurtt ME; Engel S
    Reprod Toxicol; 2015 Aug; 56():105-8. PubMed ID: 25937597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tools in the Design of Therapeutic Drugs for CNS Disorders: An up-to-date Review.
    Sahu JK; Mishra AK
    Curr Mol Pharmacol; 2018; 11(4):270-278. PubMed ID: 30129422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real life juvenile toxicity case studies: the good, the bad and the ugly.
    De Schaepdrijver L; Rouan MC; Raoof A; Bailey GP; De Zwart L; Monbaliu J; Coogan TP; Lammens L; Coussement W
    Reprod Toxicol; 2008 Sep; 26(1):54-5. PubMed ID: 18514481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonclinical safety assessment of MnTE-2-PyP, a manganese porphyrin.
    Gad SC; Sullivan DW; Crapo JD; Spainhour CB
    Int J Toxicol; 2013 Jul; 32(4):274-87. PubMed ID: 23704100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Juvenile Nonclinical Safety Studies in Support of Pediatric Drug Development.
    Barrow PC; Schmitt G
    Methods Mol Biol; 2017; 1641():25-67. PubMed ID: 28748457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurofunctional test batteries in safety pharmacology - Current and emerging considerations for the drug development process.
    Jackson SJ; Authier S; Brohmann H; Goody SMG; Jones D; Prior H; Rosch A; Traebert M; Tse K; Valentin JP; Milne A
    J Pharmacol Toxicol Methods; 2019; 100():106602. PubMed ID: 31238094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Juvenile Animal Testing: Assessing Need and Use in the Drug Product Label.
    Baldrick P
    Ther Innov Regul Sci; 2018 Sep; 52(5):641-648. PubMed ID: 29714556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.