These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31662008)

  • 21. Juvenile animal studies and pediatric drug development retrospective review: use in regulatory decisions and labeling.
    Tassinari MS; Benson K; Elayan I; Espandiari P; Davis-Bruno K
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):261-5. PubMed ID: 21594977
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Safety pharmacology assessment of central nervous system function in juvenile and adult rats: effects of pharmacological reference compounds.
    Himmel HM
    J Pharmacol Toxicol Methods; 2008; 58(2):129-46. PubMed ID: 18585470
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intranasal drug delivery to the central nervous system: present status and future outlook.
    Tayebati SK; Nwankwo IE; Amenta F
    Curr Pharm Des; 2013; 19(3):510-26. PubMed ID: 23116337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Juvenile toxicity assessment of anidulafungin in rats: an example of navigating case-by-case study design through scientific and regulatory challenges.
    Bowman CJ; Chmielewski G; Lewis E; Ripp S; Sawaryn CM; Cross DM
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):333-44. PubMed ID: 21594975
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preclinical evaluation of juvenile toxicity.
    Barrow PC; Barbellion S; Stadler J
    Methods Mol Biol; 2011; 691():17-35. PubMed ID: 20972745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A method to predict different mechanisms for blood-brain barrier permeability of CNS activity compounds in Chinese herbs using support vector machine.
    Jiang L; Chen J; He Y; Zhang Y; Li G
    J Bioinform Comput Biol; 2016 Feb; 14(1):1650005. PubMed ID: 26632324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A physiologically based modeling strategy during preclinical CNS drug development.
    Ball K; Bouzom F; Scherrmann JM; Walther B; Declèves X
    Mol Pharm; 2014 Mar; 11(3):836-48. PubMed ID: 24446829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applications of nanotechnology in drug delivery to the central nervous system.
    Saeedi M; Eslamifar M; Khezri K; Dizaj SM
    Biomed Pharmacother; 2019 Mar; 111():666-675. PubMed ID: 30611991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of snake venom polypeptides on central nervous system.
    Osipov A; Utkin Y
    Cent Nerv Syst Agents Med Chem; 2012 Dec; 12(4):315-28. PubMed ID: 23270323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Points to Consider in Designing and Conducting Juvenile Toxicology Studies.
    Kim NN; Parker RM; Weinbauer GF; Remick AK; Steinbach T
    Int J Toxicol; 2017; 36(4):325-339. PubMed ID: 28466670
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic.
    Vuillemenot BR; Korte S; Wright TL; Adams EL; Boyd RB; Butt MT
    Toxicol Sci; 2016 Jul; 152(1):3-9. PubMed ID: 27354708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Considerations for and against dosing rodent pups before 7 days of age in juvenile toxicology studies.
    Schmitt G; Barrow P
    Reprod Toxicol; 2022 Sep; 112():77-87. PubMed ID: 35772686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The value of juvenile animal studies: a Japanese industry perspective.
    Shimomura K
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):266-8. PubMed ID: 21594974
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities.
    Begley DJ
    Pharmacol Ther; 2004 Oct; 104(1):29-45. PubMed ID: 15500907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. True alignment of preclinical and clinical research to enhance success in CNS drug development: a review of the current evidence.
    Goetghebeur PJ; Swartz JE
    J Psychopharmacol; 2016 Jul; 30(7):586-94. PubMed ID: 27147593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluations of organ system development in juvenile toxicology testing.
    Robinson K
    Reprod Toxicol; 2008 Sep; 26(1):51-3. PubMed ID: 18595655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The great barrier belief: The blood-brain barrier and considerations for juvenile toxicity studies.
    Schmitt G; Parrott N; Prinssen E; Barrow P
    Reprod Toxicol; 2017 Sep; 72():129-135. PubMed ID: 28627392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proposal for an evaluation schedule of potential CNS activity of various agents.
    Corsico N
    Pharmacol Ther B; 1979; 5(1-3):427-9. PubMed ID: 40262
    [No Abstract]   [Full Text] [Related]  

  • 39. Implications of retinal effects observed in chronic toxicity studies on the clinical development of a CNS-active drug candidate.
    Eichenbaum G; Zhou J; Kelley MF; Roosen W; Costa-Giomi P; Louden C; Di Prospero NA; Pandina G; Singh JB; Ford L; Moyer JA; Nork TM; Ver Hoeve JN; Aguirre GD
    Regul Toxicol Pharmacol; 2014 Jul; 69(2):187-200. PubMed ID: 24680767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.
    Sharma A; Menon P; Muresanu DF; Ozkizilcik A; Tian ZR; Lafuente JV; Sharma HS
    CNS Neurol Disord Drug Targets; 2016; 15(9):1092-1117. PubMed ID: 27538949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.