These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31662008)

  • 41. Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.
    Sharma A; Menon P; Muresanu DF; Ozkizilcik A; Tian ZR; Lafuente JV; Sharma HS
    CNS Neurol Disord Drug Targets; 2016; 15(9):1092-1117. PubMed ID: 27538949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Juvenile animal testing in drug development--is it useful?
    Baldrick P
    Regul Toxicol Pharmacol; 2010; 57(2-3):291-9. PubMed ID: 20350578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diazenyl derivatives as therapeutic and diagnostic agents acting on central nervous system.
    Kaur H; Yadav S; Narasimhan B
    Cent Nerv Syst Agents Med Chem; 2015; 15(1):42-51. PubMed ID: 25675399
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative juvenile safety testing of new therapeutic candidates: relevance of laboratory animal data to children.
    Anderson T; Khan NK; Tassinari MS; Hurtt ME
    J Toxicol Sci; 2009; 34 Suppl 2():SP209-15. PubMed ID: 19571471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CNS Safety Screening Under ICH S7A Guidelines Requires Observations of Multiple Behavioral Units to Assess Motor Function.
    Gauvin DV; Zimmermann ZJ; Dalton JA; Baird TJ; Kallman MJ
    Int J Toxicol; 2019; 38(5):339-356. PubMed ID: 31470748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In silico prediction of central nervous system activity of compounds. Identification of potential pharmacophores by the TOPS-MODE approach.
    Cabrera Pérez MA; Sanz MB
    Bioorg Med Chem; 2004 Nov; 12(22):5833-43. PubMed ID: 15498659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The evolution of juvenile animal testing for small and large molecules.
    Baldrick P
    Regul Toxicol Pharmacol; 2013 Nov; 67(2):125-35. PubMed ID: 23896345
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vivo Systems Response Profiling and Multivariate Classification of CNS Active Compounds: A Structured Tool for CNS Drug Discovery.
    Waters S; Svensson P; Kullingsjö J; Pontén H; Andreasson T; Sunesson Y; Ljung E; Sonesson C; Waters N
    ACS Chem Neurosci; 2017 Apr; 8(4):785-797. PubMed ID: 27997108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The emerging role of in vitro electrophysiological methods in CNS safety pharmacology.
    Accardi MV; Pugsley MK; Forster R; Troncy E; Huang H; Authier S
    J Pharmacol Toxicol Methods; 2016; 81():47-59. PubMed ID: 27058269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. What have we learned from pre-clinical juvenile toxicity studies?
    Bailey GP; Mariën D
    Reprod Toxicol; 2009 Sep; 28(2):226-9. PubMed ID: 19446432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CNS Adverse Effects: From Functional Observation Battery/Irwin Tests to Electrophysiology.
    Fonck C; Easter A; Pietras MR; Bialecki RA
    Handb Exp Pharmacol; 2015; 229():83-113. PubMed ID: 26091637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Value of juvenile animal studies.
    Leconte I; Bailey G; Davis-Bruno K; Hew KW; Kim J; Silva Lima B; Liminga U; Moffit J; De Schaepdrijver L; Schmitt G; Tassinari M; Thompson K; Hurtt M
    Birth Defects Res B Dev Reprod Toxicol; 2011 Aug; 92(4):292-303. PubMed ID: 22623020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development and validation of a pharmacophore-based QSAR model for the prediction of CNS activity.
    Gozalbes R; Barbosa F; Nicolaï E; Horvath D; Froloff N
    ChemMedChem; 2009 Feb; 4(2):204-9. PubMed ID: 19097128
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrating in Silico and in Vitro Approaches To Predict Drug Accessibility to the Central Nervous System.
    Zhang YY; Liu H; Summerfield SG; Luscombe CN; Sahi J
    Mol Pharm; 2016 May; 13(5):1540-50. PubMed ID: 27015243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model.
    Doran A; Obach RS; Smith BJ; Hosea NA; Becker S; Callegari E; Chen C; Chen X; Choo E; Cianfrogna J; Cox LM; Gibbs JP; Gibbs MA; Hatch H; Hop CE; Kasman IN; Laperle J; Liu J; Liu X; Logman M; Maclin D; Nedza FM; Nelson F; Olson E; Rahematpura S; Raunig D; Rogers S; Schmidt K; Spracklin DK; Szewc M; Troutman M; Tseng E; Tu M; Van Deusen JW; Venkatakrishnan K; Walens G; Wang EQ; Wong D; Yasgar AS; Zhang C
    Drug Metab Dispos; 2005 Jan; 33(1):165-74. PubMed ID: 15502009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the effects of plant-derived essential oils on central nervous system function using discrete shuttle-type conditioned avoidance response in mice.
    Umezu T
    Phytother Res; 2012 Jun; 26(6):884-91. PubMed ID: 22086772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Safety assessment of biotechnology-derived pharmaceuticals: ICH and beyond.
    Serabian MA; Pilaro AM
    Toxicol Pathol; 1999; 27(1):27-31. PubMed ID: 10367669
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Perispinal Delivery of CNS Drugs.
    Tobinick EL
    CNS Drugs; 2016 Jun; 30(6):469-80. PubMed ID: 27120182
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PASS assisted search and evaluation of some azetidin-2-ones as C.N.S. active agents.
    Goel RK; Singh A; Naidu PS; Mahajan MP; Kulkarni SK
    J Pharm Pharm Sci; 2005 Aug; 8(2):182-9. PubMed ID: 16124929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CNS drug development - lost in translation?
    Talevi A; Bellera CL; Di Ianni M; Gantner M; Bruno-Blanch LE; Castro EA
    Mini Rev Med Chem; 2012 Sep; 12(10):959-70. PubMed ID: 22420574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.