BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31662027)

  • 1. Medium-Throughput Detection of Hsp90/Cdc37 Protein-Protein Interaction Inhibitors Using a Split
    Siddiqui FA; Parkkola H; Manoharan GB; Abankwa D
    SLAS Discov; 2020 Feb; 25(2):195-206. PubMed ID: 31662027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) to characterize Hsp90-Cdc37 complex and identify critical residues in protein/protein interactions.
    Jiang Y; Bernard D; Yu Y; Xie Y; Zhang T; Li Y; Burnett JP; Fu X; Wang S; Sun D
    J Biol Chem; 2010 Jul; 285(27):21023-36. PubMed ID: 20413594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening.
    He J; Niu X; Hu C; Zhang H; Guo Y; Ge Y; Wang G; Jiang Y
    Protein Expr Purif; 2013 Nov; 92(1):119-27. PubMed ID: 24056254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and bioevaluation of inhibitors targeting HSP90-CDC37 protein-protein interaction based on a hydrophobic core.
    Zhang Q; Wu X; Zhou J; Zhang L; Xu X; Zhang L; You Q; Wang L
    Eur J Med Chem; 2021 Jan; 210():112959. PubMed ID: 33109397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites.
    Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K
    J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ.
    Sonamoto R; Kii I; Koike Y; Sumida Y; Kato-Sumida T; Okuno Y; Hosoya T; Hagiwara M
    Sci Rep; 2015 Aug; 5():12728. PubMed ID: 26234946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A.
    Grover A; Shandilya A; Agrawal V; Pratik P; Bhasme D; Bisaria VS; Sundar D
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S30. PubMed ID: 21342561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Therapeutic Potential of Targeting Hsp90-Cdc37 Interactions in Several Diseases.
    Zhang X; Li S; Li Z; Cheng L; Liu Z; Wang C
    Curr Drug Targets; 2022; 23(10):1023-1038. PubMed ID: 35400341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of peptide inhibitors targeting HSP90-CDC37 protein-protein interaction.
    Zhang Q; Yan L; Zhang Y; Zhang L; Yu J; You Q; Wang L
    Future Med Chem; 2024 Jan; 16(2):125-138. PubMed ID: 38189168
    [No Abstract]   [Full Text] [Related]  

  • 11. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.
    Wang L; Li L; Gu K; Xu XL; Sun Y; You QD
    Curr Drug Targets; 2017; 18(13):1572-1585. PubMed ID: 27231111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation.
    Huang W; Ye M; Zhang LR; Wu QD; Zhang M; Xu JH; Zheng W
    Mol Cancer; 2014 Jun; 13():150. PubMed ID: 24927996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of celastrol to inhibit hsp90 and cdc37 interaction.
    Zhang T; Li Y; Yu Y; Zou P; Jiang Y; Sun D
    J Biol Chem; 2009 Dec; 284(51):35381-9. PubMed ID: 19858214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites.
    Eckl JM; Scherr MJ; Freiburger L; Daake MA; Sattler M; Richter K
    J Biol Chem; 2015 Dec; 290(52):30843-54. PubMed ID: 26511315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdc37 as a Co-chaperone to Hsp90.
    Prince TL; Lang BJ; Okusha Y; Eguchi T; Calderwood SK
    Subcell Biochem; 2023; 101():141-158. PubMed ID: 36520306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Okicamelliaside targets the N-terminal chaperone pocket of HSP90 disrupts the chaperone protein interaction of HSP90-CDC37 and exerts antitumor activity.
    Cheng CJ; Liu KX; Zhang M; Shen FK; Ye LL; Wu WB; Hou XT; Hao EW; Hou YY; Bai G
    Acta Pharmacol Sin; 2022 Apr; 43(4):1046-1058. PubMed ID: 34326484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of an Hsp90-Cdc37-Cdk4 complex.
    Vaughan CK; Gohlke U; Sobott F; Good VM; Ali MM; Prodromou C; Robinson CV; Saibil HR; Pearl LH
    Mol Cell; 2006 Sep; 23(5):697-707. PubMed ID: 16949366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90.
    Wang J; Guo W; Long C; Zhou H; Wang H; Sun X
    Acta Virol; 2016 Mar; 60(1):62-70. PubMed ID: 26982469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of Disruptors of the Hsp90-Cdc37 Interface.
    D'Annessa I; Hurwitz N; Pirota V; Beretta GL; Tinelli S; Woodford M; Freccero M; Mollapour M; Zaffaroni N; Wolfson H; Colombo G
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31952296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.