BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31662087)

  • 1. Altered trophic interactions in warming climates: consequences for predator diet breadth and fitness.
    Bestion E; Soriano-Redondo A; Cucherousset J; Jacob S; White J; Zinger L; Fourtune L; Di Gesu L; Teyssier A; Cote J
    Proc Biol Sci; 2019 Nov; 286(1914):20192227. PubMed ID: 31662087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predator presence and recent climatic warming raise body temperatures of island lizards.
    Landry Yuan F; Ito S; Tsang TPN; Kuriyama T; Yamasaki K; Bonebrake TC; Hasegawa M
    Ecol Lett; 2021 Mar; 24(3):533-542. PubMed ID: 33404198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eco-evolutionary trophic dynamics: loss of top predators drives trophic evolution and ecology of prey.
    Palkovacs EP; Wasserman BA; Kinnison MT
    PLoS One; 2011 Apr; 6(4):e18879. PubMed ID: 21526156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change enhances the negative effects of predation risk on an intermediate consumer.
    Miller LP; Matassa CM; Trussell GC
    Glob Chang Biol; 2014 Dec; 20(12):3834-44. PubMed ID: 24947942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity.
    Jiang L; Morin PJ
    Am Nat; 2005 Mar; 165(3):350-63. PubMed ID: 15729665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm.
    Bestion E; Jacob S; Zinger L; Di Gesu L; Richard M; White J; Cote J
    Nat Ecol Evol; 2017 May; 1(6):161. PubMed ID: 28812632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predator Diversity and Thermal Niche Complementarity Attenuate Indirect Effects of Warming on Prey Survival.
    Pepi A; McMunn M
    Am Nat; 2021 Jul; 198(1):33-43. PubMed ID: 34143721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems.
    Antiqueira PAP; Petchey OL; Rezende F; Machado Velho LF; Rodrigues LC; Romero GQ
    J Anim Ecol; 2022 Feb; 91(2):428-442. PubMed ID: 34808001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warming can destabilize predator-prey interactions by shifting the functional response from Type III to Type II.
    Daugaard U; Petchey OL; Pennekamp F
    J Anim Ecol; 2019 Oct; 88(10):1575-1586. PubMed ID: 31257583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trophic cascades alter eco-evolutionary dynamics and body size evolution.
    Luhring TM; DeLong JP
    Proc Biol Sci; 2020 Nov; 287(1938):20200526. PubMed ID: 33143578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental change and predator diversity drive alpha and beta diversity in freshwater macro and microorganisms.
    Antiqueira PAP; Petchey OL; Dos Santos VP; de Oliveira VM; Romero GQ
    Glob Chang Biol; 2018 Aug; 24(8):3715-3728. PubMed ID: 29772087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trophic downgrading decreases species asynchrony and community stability regardless of climate warming.
    Rezende F; Antiqueira PAP; Petchey OL; Velho LFM; Rodrigues LC; Romero GQ
    Ecol Lett; 2021 Dec; 24(12):2660-2673. PubMed ID: 34537987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducible defenses in prey intensify predator cannibalism.
    Kishida O; Trussell GC; Nishimura K; Ohgushi T
    Ecology; 2009 Nov; 90(11):3150-8. PubMed ID: 19967870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming effects on lizard gut microbiome depend on habitat connectivity.
    Fromm E; Zinger L; Pellerin F; Di Gesu L; Jacob S; Winandy L; Aguilée R; Parthuisot N; Iribar A; White J; Bestion E; Cote J
    Proc Biol Sci; 2024 Apr; 291(2021):20240220. PubMed ID: 38654642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in invertebrate food web structure between high- and low-productivity environments are driven by intermediate but not top-predator diet shifts.
    Miller-Ter Kuile A; Apigo A; Bui A; Butner K; Childress JN; Copeland S; DiFiore BP; Forbes ES; Klope M; Motta CI; Orr D; Plummer KA; Preston DL; Young HS
    Biol Lett; 2022 Oct; 18(10):20220364. PubMed ID: 36287142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effects on prey and basal resources exceed that of predators in an experimental community.
    Thakur MP; Griffin JN; Künne T; Dunker S; Fanesi A; Eisenhauer N
    Ecol Evol; 2018 Dec; 8(24):12670-12680. PubMed ID: 30619572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioenergy landscapes drive trophic shifts in generalist ants.
    Helms JA; Roeder KA; Ijelu SE; Ratcliff I; Haddad NM
    J Anim Ecol; 2021 Mar; 90(3):738-750. PubMed ID: 33314089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained Drought, but Not Short-Term Warming, Alters the Gut Microbiomes of Wild
    Williams CE; Kueneman JG; Nicholson DJ; Rosso AA; Folfas E; Casement B; Gallegos-Koyner MA; Neel LK; Curlis JD; McMillan WO; Cox CL; Logan ML
    Appl Environ Microbiol; 2022 Oct; 88(19):e0053022. PubMed ID: 36165625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions.
    Sentis A; Gémard C; Jaugeon B; Boukal DS
    Glob Chang Biol; 2017 Jul; 23(7):2629-2640. PubMed ID: 27862723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trophic niche segregation allows range-extending coral reef fishes to co-exist with temperate species under climate change.
    Kingsbury KM; Gillanders BM; Booth DJ; Nagelkerken I
    Glob Chang Biol; 2020 Feb; 26(2):721-733. PubMed ID: 31846164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.