These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31662197)

  • 21. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.
    Mooney LM; Herr HM
    J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
    Dembia CL; Silder A; Uchida TK; Hicks JL; Delp SL
    PLoS One; 2017; 12(7):e0180320. PubMed ID: 28700630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An exoskeleton using controlled energy storage and release to aid ankle propulsion.
    Wiggin MB; Sawicki GS; Collins SH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975342. PubMed ID: 22275547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy Flow and Functional Behavior of Individual Muscles at Different Speeds During Human Walking.
    Hu Z; Ren L; Wei G; Qian Z; Liang W; Chen W; Lu X; Ren L; Wang K
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():294-303. PubMed ID: 36374868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping.
    Farris DJ; Robertson BD; Sawicki GS
    J Appl Physiol (1985); 2013 Sep; 115(5):579-85. PubMed ID: 23788578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking.
    Zelik KE; Takahashi KZ; Sawicki GS
    J Exp Biol; 2015 Mar; 218(Pt 6):876-86. PubMed ID: 25788726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The energetic effect of hip flexion and retraction in walking at different speeds: a modeling study.
    Jin J; Kistemaker D; van Dieën JH; Daffertshofer A; Bruijn SM
    PeerJ; 2023; 11():e14662. PubMed ID: 36691478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spring uses in exoskeleton actuation design.
    Wang S; van Dijk W; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975471. PubMed ID: 22275669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A biarticular passive exosuit to support balance control can reduce metabolic cost of walking.
    Barazesh H; Ahmad Sharbafi M
    Bioinspir Biomim; 2020 Mar; 15(3):036009. PubMed ID: 31995519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the origin of the soleus H-reflex modulation pattern during human walking and its task-dependent differences.
    Schneider C; Lavoie BA; Capaday C
    J Neurophysiol; 2000 May; 83(5):2881-90. PubMed ID: 10805685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reducing the energy cost of human walking using an unpowered exoskeleton.
    Collins SH; Wiggin MB; Sawicki GS
    Nature; 2015 Jun; 522(7555):212-5. PubMed ID: 25830889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Pneumatic Artificial Muscle and Spring Combination System that Assists Ankle Rocker and Transforms Energy into Push-Off Support: A Feasibility Study in Heathy Participants.
    Hong JC; Gao J; Yasuda K; Ohashi H; Iwata H
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics.
    Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.