These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31662198)

  • 1. Non-rigid alignment pipeline applied to human gait signals acquired with optical motion capture systems and inertial sensors.
    Soussé R; Verdú J; Jauregui R; Ferrer-Roca V; Balocco S
    J Biomech; 2020 Jan; 98():109429. PubMed ID: 31662198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study.
    Berner K; Cockcroft J; Louw Q
    Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of inertial measurement units as a novel method for kinematic gait evaluation in dogs.
    Duerr FM; Pauls A; Kawcak C; Haussler K; Bertocci G; Moorman V; King M
    Vet Comp Orthop Traumatol; 2016 Nov; 29(6):475-483. PubMed ID: 27761576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring markers of aging and knee osteoarthritis gait using inertial measurement units.
    Hafer JF; Provenzano SG; Kern KL; Agresta CE; Grant JA; Zernicke RF
    J Biomech; 2020 Jan; 99():109567. PubMed ID: 31916999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit-stand transfers and step-up transfers: Comparison with an optoelectronic motion capture system.
    Bolink SA; Naisas H; Senden R; Essers H; Heyligers IC; Meijer K; Grimm B
    Med Eng Phys; 2016 Mar; 38(3):225-31. PubMed ID: 26711470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of shoe-type inertial measurement units for Parkinson's disease patients during treadmill walking.
    Lee M; Youm C; Jeon J; Cheon SM; Park H
    J Neuroeng Rehabil; 2018 May; 15(1):38. PubMed ID: 29764466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of inertial measurement units with optical tracking system in patients operated with Total hip arthroplasty.
    Zügner R; Tranberg R; Timperley J; Hodgins D; Mohaddes M; Kärrholm J
    BMC Musculoskelet Disord; 2019 Feb; 20(1):52. PubMed ID: 30727979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity Evaluation of an Inertial Measurement Unit (IMU) in Gait Analysis Using Statistical Parametric Mapping (SPM).
    Park S; Yoon S
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-sensor human gait dataset captured through an optical system and inertial measurement units.
    Santos G; Wanderley M; Tavares T; Rocha A
    Sci Data; 2022 Sep; 9(1):545. PubMed ID: 36071060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation-Invariant Spatio-Temporal Gait Analysis Using Foot-Worn Inertial Sensors.
    Guimarães V; Sousa I; Correia MV
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treadmill-to-Overground Mapping of Marker Trajectory for Treadmill-Based Continuous Gait Analysis.
    Jung WC; Lee JK
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33503973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Stride Time Variability in Unobtrusive Long-Term Monitoring Using Inertial Measurement Sensors.
    Lueken M; Kate WT; Valenti G; Batista JP; Bollheimer C; Leonhardt S; Ngo C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1879-1886. PubMed ID: 32386168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models.
    Dorschky E; Nitschke M; Seifer AK; van den Bogert AJ; Eskofier BM
    J Biomech; 2019 Oct; 95():109278. PubMed ID: 31472970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of Inertial Sensors to Evaluate Gait Stability.
    Riek PM; Best AN; Wu AR
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on estimation of planar gait kinematics using minimal inertial measurement units and inverse kinematics.
    Hu X; Soh GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6911-4. PubMed ID: 25571585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Physiological Significance of Four Inertial Gait Features in Multiple Sclerosis.
    Dandu SR; Engelhard MM; Qureshi A; Gong J; Lach JC; Brandt-Pearce M; Goldman MD
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):40-46. PubMed ID: 29300700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric Gait Analysis Using a DTW Algorithm with Combined Gyroscope and Pressure Sensor.
    Jeong YK; Baek KR
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of a low-cost inertial motion capture system for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Muller A; Larue C; Plamondon A
    J Biomech; 2020 Jan; 99():109520. PubMed ID: 31787261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable Gait Lab: Zero Moment Point for Minimal Sensing of Gait.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Saes M; Bussmann JBJ; Meskers CG; Wegen EV; Kwakkel G; Veltink PH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2077-2081. PubMed ID: 31946310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.