These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31662238)

  • 1. Alternative chloride transport pathways as pharmacological targets for the treatment of cystic fibrosis.
    Quesada R; Dutzler R
    J Cyst Fibros; 2020 Mar; 19 Suppl 1():S37-S41. PubMed ID: 31662238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separating the contributions of SLC26A9 and CFTR to anion secretion in primary human bronchial epithelia.
    Larsen MB; Choi JJ; Wang X; Myerburg MM; Frizzell RA; Bertrand CA
    Am J Physiol Lung Cell Mol Physiol; 2021 Dec; 321(6):L1147-L1160. PubMed ID: 34668421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del-CFTR.
    Sato Y; Thomas DY; Hanrahan JW
    J Biol Chem; 2019 Nov; 294(48):18269-18284. PubMed ID: 31645438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLC26A9 as a Potential Modifier and Therapeutic Target in Cystic Fibrosis Lung Disease.
    Gorrieri G; Zara F; Scudieri P
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bypassing CFTR dysfunction in cystic fibrosis with alternative pathways for anion transport.
    Li H; Salomon JJ; Sheppard DN; Mall MA; Galietta LJ
    Curr Opin Pharmacol; 2017 Jun; 34():91-97. PubMed ID: 29065356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting ion channels in cystic fibrosis.
    Mall MA; Galietta LJ
    J Cyst Fibros; 2015 Sep; 14(5):561-70. PubMed ID: 26115565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMEM16A: An Alternative Approach to Restoring Airway Anion Secretion in Cystic Fibrosis?
    Danahay H; Gosling M
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance.
    El Khouri E; Touré A
    Int J Biochem Cell Biol; 2014 Jul; 52():58-67. PubMed ID: 24530837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride transport modulators as drug candidates.
    Verkman AS; Galietta LJV
    Am J Physiol Cell Physiol; 2021 Dec; 321(6):C932-C946. PubMed ID: 34644122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy in Cystic Fibrosis Therapies: Targeting SLC26A9.
    Pinto MC; Quaresma MC; Silva IAL; Railean V; Ramalho SS; Amaral MD
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane-localized TMEM16 proteins are indispensable for expression of CFTR.
    Benedetto R; Ousingsawat J; Cabrita I; Pinto M; Lérias JR; Wanitchakool P; Schreiber R; Kunzelmann K
    J Mol Med (Berl); 2019 May; 97(5):711-722. PubMed ID: 30915480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMEM16A Potentiation: A Novel Therapeutic Approach for the Treatment of Cystic Fibrosis.
    Danahay HL; Lilley S; Fox R; Charlton H; Sabater J; Button B; McCarthy C; Collingwood SP; Gosling M
    Am J Respir Crit Care Med; 2020 Apr; 201(8):946-954. PubMed ID: 31898911
    [No Abstract]   [Full Text] [Related]  

  • 13. Epithelial Chloride Transport by CFTR Requires TMEM16A.
    Benedetto R; Ousingsawat J; Wanitchakool P; Zhang Y; Holtzman MJ; Amaral M; Rock JR; Schreiber R; Kunzelmann K
    Sci Rep; 2017 Sep; 7(1):12397. PubMed ID: 28963502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slc26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain.
    Chang MH; Plata C; Sindic A; Ranatunga WK; Chen AP; Zandi-Nejad K; Chan KW; Thompson J; Mount DB; Romero MF
    J Biol Chem; 2009 Oct; 284(41):28306-28318. PubMed ID: 19643730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards next generation therapies for cystic fibrosis: Folding, function and pharmacology of CFTR.
    Bose SJ; Krainer G; Ng DRS; Schenkel M; Shishido H; Yoon JS; Haggie PM; Schlierf M; Sheppard DN; Skach WR
    J Cyst Fibros; 2020 Mar; 19 Suppl 1(Suppl 1):S25-S32. PubMed ID: 31902693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of SLC26A9 in Airways and Its Potential Role in Asthma.
    Ousingsawat J; Centeio R; Schreiber R; Kunzelmann K
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TMEM16A/ANO1: Current Strategies and Novel Drug Approaches for Cystic Fibrosis.
    Mitri C; Sharma H; Corvol H; Tabary O
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The revolution of personalized pharmacotherapies for cystic fibrosis: what does the future hold?
    Oliver KE; Carlon MS; Pedemonte N; Lopes-Pacheco M
    Expert Opin Pharmacother; 2023; 24(14):1545-1565. PubMed ID: 37379072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenic Relationships in Cystic Fibrosis and Renal Diseases: CFTR, SLC26A9 and Anoctamins.
    Kunzelmann K; Ousingsawat J; Kraus A; Park JH; Marquardt T; Schreiber R; Buchholz B
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse organoid culture is a suitable model to study esophageal ion transport mechanisms.
    Korsós MM; Bellák T; Becskeházi E; Gál E; Veréb Z; Hegyi P; Venglovecz V
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C798-C811. PubMed ID: 34524930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.