These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31662262)

  • 21. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms.
    Chen G; Liu X; Su C
    Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mobility of solid and porous hollow SiO
    Bueno V; Bosi A; Tosco T; Ghoshal S
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):480-490. PubMed ID: 34399364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.
    Li L; Schuster M
    Sci Total Environ; 2014 Feb; 472():971-8. PubMed ID: 24355393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion.
    Liu S; Liu Y; Pan B; He Y; Li B; Zhou D; Xiao Y; Qiu H; Vijver MG; Peijnenburg WJGM
    Chemosphere; 2020 Apr; 245():125612. PubMed ID: 31864948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D; Zhang W; Zhou D
    Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).
    Miao L; Wang C; Hou J; Wang P; Ao Y; Li Y; Lv B; Yang Y; You G; Xu Y
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11611-9. PubMed ID: 26931664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm.
    Jiang X; Wang X; Tong M; Kim H
    Environ Pollut; 2013 Mar; 174():38-49. PubMed ID: 23246745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the transport and colloidal behavior of Fe
    Thomas R; Ghosh D; Pulimi M; Nirmala J; Anand S; Rai PK; Mukherjee A
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118693-118705. PubMed ID: 37917261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of citrate-coated silver nanoparticles in saturated porous media.
    Lim M; Hwang G; Bae S; Jang MH; Choi S; Kim H; Hwang YS
    Environ Geochem Health; 2020 Jun; 42(6):1753-1766. PubMed ID: 31506875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the effects of surfactant, hardness, and natural organic matter on deposition and mobility of silver nanoparticles in saturated porous media.
    Park CM; Heo J; Her N; Chu KH; Jang M; Yoon Y
    Water Res; 2016 Oct; 103():38-47. PubMed ID: 27429353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Removal of CuO Nanoparticles from Water by Conventional Treatment C/F/S: The Effect of pH and Natural Organic Matter.
    Khan R; Inam MA; Park DR; Khan S; Akram M; Yeom IT
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30841649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions.
    Zhao J; Liu Y; Pan B; Gao G; Liu Y; Liu S; Liang N; Zhou D; Vijver MG; Peijnenburg WJGM
    Water Res; 2017 Dec; 127():59-67. PubMed ID: 29031800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.
    Wang C; Bobba AD; Attinti R; Shen C; Lazouskaya V; Wang LP; Jin Y
    Environ Sci Technol; 2012 Jul; 46(13):7151-8. PubMed ID: 22642719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influences of input concentration, media particle size, metal cation valence, and ionic concentration on the transport, long-term release, and particle breakage of polyvinyl chloride nanoplastics in saturated porous media.
    Zhang M; Hou J; Xia J; Zeng Y; Miao L
    Chemosphere; 2023 May; 322():138130. PubMed ID: 36780995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions.
    Xia T; Lin Y; Guo X; Li S; Cui J; Ping H; Zhang J; Zhong R; Du L; Han C; Zhu L
    Environ Pollut; 2019 Aug; 251():723-730. PubMed ID: 31112926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media.
    Kumari J; Mathur A; Rajeshwari A; Venkatesan A; S S; Pulimi M; Chandrasekaran N; Nagarajan R; Mukherjee A
    PLoS One; 2015; 10(8):e0134796. PubMed ID: 26252479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.