These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31662705)

  • 1. Top-Down ETD-MS Provides Unreliable Quantitation of Methionine Oxidation.
    Tadi S; Sharp JS
    J Biomol Tech; 2019 Dec; 30(4):50-57. PubMed ID: 31662705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Quantification of Peptide Oxidation Isomers From Complex Mixtures.
    Khaje NA; Sharp JS
    Anal Chem; 2020 Mar; 92(5):3834-3843. PubMed ID: 32039584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercharging by m-NBA Improves ETD-Based Quantification of Hydroxyl Radical Protein Footprinting.
    Li X; Li Z; Xie B; Sharp JS
    J Am Soc Mass Spectrom; 2015 Aug; 26(8):1424-7. PubMed ID: 25916598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved identification and relative quantification of sites of peptide and protein oxidation for hydroxyl radical footprinting.
    Li X; Li Z; Xie B; Sharp JS
    J Am Soc Mass Spectrom; 2013 Nov; 24(11):1767-76. PubMed ID: 24014150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary Zone Electrophoresis-Tandem Mass Spectrometry with Activated Ion Electron Transfer Dissociation for Large-scale Top-down Proteomics.
    McCool EN; Lodge JM; Basharat AR; Liu X; Coon JJ; Sun L
    J Am Soc Mass Spectrom; 2019 Dec; 30(12):2470-2479. PubMed ID: 31073891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary reactions and strategies to improve quantitative protein footprinting.
    Xu G; Kiselar J; He Q; Chance MR
    Anal Chem; 2005 May; 77(10):3029-37. PubMed ID: 15889890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Value of Activated Ion Electron Transfer Dissociation for High-Throughput Top-Down Characterization of Intact Proteins.
    Riley NM; Sikora JW; Seckler HS; Greer JB; Fellers RT; LeDuc RD; Westphall MS; Thomas PM; Kelleher NL; Coon JJ
    Anal Chem; 2018 Jul; 90(14):8553-8560. PubMed ID: 29924586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting.
    Xu G; Chance MR
    Anal Chem; 2005 Apr; 77(8):2437-49. PubMed ID: 15828779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of methionine into homocysteic acid in heavily oxidized proteomics samples.
    Bern M; Saladino J; Sharp JS
    Rapid Commun Mass Spectrom; 2010 Mar; 24(6):768-72. PubMed ID: 20169556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron capture dissociation mass spectrometry in characterization of peptides and proteins.
    Bakhtiar R; Guan Z
    Biotechnol Lett; 2006 Jul; 28(14):1047-59. PubMed ID: 16794768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation.
    Xie B; Sharp JS
    J Am Soc Mass Spectrom; 2016 Aug; 27(8):1322-7. PubMed ID: 27075875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications.
    Wiesner J; Premsler T; Sickmann A
    Proteomics; 2008 Nov; 8(21):4466-83. PubMed ID: 18972526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting.
    Saladino J; Liu M; Live D; Sharp JS
    J Am Soc Mass Spectrom; 2009 Jun; 20(6):1123-6. PubMed ID: 19278868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down analysis of 30-80 kDa proteins by electron transfer dissociation time-of-flight mass spectrometry.
    Fornelli L; Parra J; Hartmer R; Stoermer C; Lubeck M; Tsybin YO
    Anal Bioanal Chem; 2013 Oct; 405(26):8505-14. PubMed ID: 23934349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling matrix-assisted ionization with high resolution mass spectrometry and electron transfer dissociation to characterize intact proteins and post-translational modifications.
    Chen B; Lietz CB; Li L
    Anal Bioanal Chem; 2018 Jan; 410(3):1007-1017. PubMed ID: 28900710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid method for quantifying the extent of methionine oxidation in intact calmodulin.
    Galeva NA; Esch SW; Williams TD; Markille LM; Squier TC
    J Am Soc Mass Spectrom; 2005 Sep; 16(9):1470-1480. PubMed ID: 16023363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-Phase Fragmentation Behavior of Oxidized Prenyl Peptides by CID and ETD Tandem Mass Spectrometry.
    Bhawal RP; Shahinuzzaman AD; Chowdhury SM
    J Am Soc Mass Spectrom; 2017 Apr; 28(4):704-707. PubMed ID: 27785692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the ETD/PTR reactions in top-down proteomics as a faster alternative to bottom-up nanoLC-MS/MS protein identification.
    Drabik A; Bodzon-Kulakowska A; Suder P
    J Mass Spectrom; 2012 Oct; 47(10):1347-52. PubMed ID: 23019167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome.
    Bettinger JQ; Welle KA; Hryhorenko JR; Ghaemmaghami S
    J Proteome Res; 2020 Feb; 19(2):624-633. PubMed ID: 31801345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments and applications of electron transfer dissociation mass spectrometry in proteomics.
    Sarbu M; Ghiulai RM; Zamfir AD
    Amino Acids; 2014 Jul; 46(7):1625-34. PubMed ID: 24687149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.