These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31663198)

  • 21. Ultrasound and microbubbles to beat barriers in tumors: Improving delivery of nanomedicine.
    Snipstad S; Vikedal K; Maardalen M; Kurbatskaya A; Sulheim E; Davies CL
    Adv Drug Deliv Rev; 2021 Oct; 177():113847. PubMed ID: 34182018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting cancer cells in the tumor microenvironment: opportunities and challenges in combinatorial nanomedicine.
    Linton SS; Sherwood SG; Drews KC; Kester M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):208-22. PubMed ID: 26153136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoactivatable Protherapeutic Nanomedicine for Cancer.
    Zhang Y; Xu C; Yang X; Pu K
    Adv Mater; 2020 Aug; 32(34):e2002661. PubMed ID: 32667701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging Nano Drug Delivery Systems Targeting Cancer-Associated Fibroblasts for Improved Antitumor Effect and Tumor Drug Penetration.
    Guo J; Zeng H; Chen Y
    Mol Pharm; 2020 Apr; 17(4):1028-1048. PubMed ID: 32150417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical oncology: New targets for nanomedicine.
    Nicolas-Boluda A; Silva AKA; Fournel S; Gazeau F
    Biomaterials; 2018 Jan; 150():87-99. PubMed ID: 29035739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Penetration and translocation of functional inorganic nanomaterials into biological barriers.
    Cong Y; Baimanov D; Zhou Y; Chen C; Wang L
    Adv Drug Deliv Rev; 2022 Dec; 191():114615. PubMed ID: 36356929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.
    Lao YH; Phua KK; Leong KW
    ACS Nano; 2015 Mar; 9(3):2235-54. PubMed ID: 25731717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcoming the tumor microenvironment: the role of nanohyperthermia.
    Silva AK; Nicolas-Boluda A; Fouassier L; Gazeau F
    Nanomedicine (Lond); 2017 Jun; 12(11):1213-1215. PubMed ID: 28520515
    [No Abstract]   [Full Text] [Related]  

  • 31. Nanomedicine-Based Immunotherapy for the Treatment of Cancer Metastasis.
    Zhang P; Zhai Y; Cai Y; Zhao Y; Li Y
    Adv Mater; 2019 Dec; 31(49):e1904156. PubMed ID: 31566275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine.
    Han H; Xing L; Chen BT; Liu Y; Zhou TJ; Wang Y; Zhang LF; Li L; Cho CS; Jiang HL
    Adv Drug Deliv Rev; 2023 Sep; 200():115051. PubMed ID: 37549848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smart transformable nanomedicines for cancer therapy.
    Wang Y; Li S; Wang X; Chen Q; He Z; Luo C; Sun J
    Biomaterials; 2021 Apr; 271():120737. PubMed ID: 33690103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exosomes in Cancer Nanomedicine and Immunotherapy: Prospects and Challenges.
    Syn NL; Wang L; Chow EK; Lim CT; Goh BC
    Trends Biotechnol; 2017 Jul; 35(7):665-676. PubMed ID: 28365132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment.
    Tanaka HY; Kano MR
    Cancer Sci; 2018 Jul; 109(7):2085-2092. PubMed ID: 29737600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Programmable nanomedicine: synergistic and sequential drug delivery systems.
    Pacardo DB; Ligler FS; Gu Z
    Nanoscale; 2015 Feb; 7(8):3381-91. PubMed ID: 25631684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition.
    He Q; Shi J
    Adv Mater; 2014 Jan; 26(3):391-411. PubMed ID: 24142549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanomedicines as emerging platform for simultaneous delivery of cancer therapeutics: new developments in overcoming drug resistance and optimizing anticancer efficacy.
    Hussain Z; Arooj M; Malik A; Hussain F; Safdar H; Khan S; Sohail M; Pandey M; Choudhury H; Ei Thu H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1015-1024. PubMed ID: 29873531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.