These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31663407)
61. Tat-functionalized liposomes for the treatment of meningitis: an in vitro study. Bartomeu Garcia C; Shi D; Webster TJ Int J Nanomedicine; 2017; 12():3009-3021. PubMed ID: 28442909 [TBL] [Abstract][Full Text] [Related]
62. Intracellular infection-responsive macrophage-targeted nanoparticles for synergistic antibiotic immunotherapy of bacterial infection. Dai X; Li Y; Liu X; Zhang Y; Gao F J Mater Chem B; 2024 May; 12(21):5248-5260. PubMed ID: 38712662 [TBL] [Abstract][Full Text] [Related]
63. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. Cong Y; Quan C; Liu M; Liu J; Huang G; Tong G; Yin Y; Zhang C; Jiang Q J Biomater Sci Polym Ed; 2015; 26(11):629-43. PubMed ID: 25994241 [TBL] [Abstract][Full Text] [Related]
64. Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages. Pei Y; Mohamed MF; Seleem MN; Yeo Y J Control Release; 2017 Dec; 267():133-143. PubMed ID: 28797580 [TBL] [Abstract][Full Text] [Related]
65. Phenotypic and genomic comparisons of highly vancomycin-resistant Staphylococcus aureus strains developed from multiple clinical MRSA strains by in vitro mutagenesis. Ishii K; Tabuchi F; Matsuo M; Tatsuno K; Sato T; Okazaki M; Hamamoto H; Matsumoto Y; Kaito C; Aoyagi T; Hiramatsu K; Kaku M; Moriya K; Sekimizu K Sci Rep; 2015 Nov; 5():17092. PubMed ID: 26603341 [TBL] [Abstract][Full Text] [Related]
66. A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system. Zhang Q; Tang J; Fu L; Ran R; Liu Y; Yuan M; He Q Biomaterials; 2013 Oct; 34(32):7980-93. PubMed ID: 23891517 [TBL] [Abstract][Full Text] [Related]
67. Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds. Karakeçili A; Topuz B; Korpayev S; Erdek M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110098. PubMed ID: 31546383 [TBL] [Abstract][Full Text] [Related]
68. Intracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycin. Brinch KS; Tulkens PM; Van Bambeke F; Frimodt-Møller N; Høiby N; Kristensen HH J Antimicrob Chemother; 2010 Aug; 65(8):1720-4. PubMed ID: 20534628 [TBL] [Abstract][Full Text] [Related]
69. Pharmacodynamic activity of ceftobiprole compared with vancomycin versus methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate Staphylococcus aureus (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) using an in vitro model. Zhanel GG; Voth D; Nichol K; Karlowsky JA; Noreddin AM; Hoban DJ J Antimicrob Chemother; 2009 Aug; 64(2):364-9. PubMed ID: 19454524 [TBL] [Abstract][Full Text] [Related]
70. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Xiang Y; Liu X; Mao C; Liu X; Cui Z; Yang X; Yeung KWK; Zheng Y; Wu S Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():214-224. PubMed ID: 29407150 [TBL] [Abstract][Full Text] [Related]
71. Calcium Phosphate Cement loaded with 10% vancomycin delivering high early and late local antibiotic concentration in vitro. Chen G; Liu B; Liu H; Zhang H; Yang K; Wang Q; Ding J; Chang F Orthop Traumatol Surg Res; 2018 Dec; 104(8):1271-1275. PubMed ID: 30107276 [TBL] [Abstract][Full Text] [Related]
72. Antibacterial Activity of Vancomycin Encapsulated in Poly(DL-lactide-co-glycolide) Nanoparticles Using Electrospraying. Booysen E; Bezuidenhout M; van Staden ADP; Dimitrov D; Deane SM; Dicks LMT Probiotics Antimicrob Proteins; 2019 Mar; 11(1):310-316. PubMed ID: 29961212 [TBL] [Abstract][Full Text] [Related]
74. Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Yousry C; Elkheshen SA; El-Laithy HM; Essam T; Fahmy RH Eur J Pharm Sci; 2017 Mar; 100():142-154. PubMed ID: 28089661 [TBL] [Abstract][Full Text] [Related]
75. [Evaluation of the activity and effects of combinations of various antibacterial agents against methicillin-resistant Staphylococcus aureus in vitro]. Kouda M; Homma S; Udagawa I; Fukuhara J; Takeuchi M; Tamura K Jpn J Antibiot; 2000 Mar; 53(3):171-8. PubMed ID: 10834148 [TBL] [Abstract][Full Text] [Related]
76. Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery. Xu H; Hu M; Yu X; Li Y; Fu Y; Zhou X; Zhang D; Li J Eur J Pharm Biopharm; 2015 Apr; 91():66-74. PubMed ID: 25660909 [TBL] [Abstract][Full Text] [Related]
77. Heterogeneous liposome membranes with pH-triggered permeability enhance the in vitro antitumor activity of folate-receptor targeted liposomal doxorubicin. Mamasheva E; O'Donnell C; Bandekar A; Sofou S Mol Pharm; 2011 Dec; 8(6):2224-32. PubMed ID: 21899300 [TBL] [Abstract][Full Text] [Related]
78. Eradication of methicillin-resistant Staphylococcus aureus infection by nanoliposomes loaded with gentamicin and oleic acid. Atashbeyk DG; Khameneh B; Tafaghodi M; Fazly Bazzaz BS Pharm Biol; 2014 Nov; 52(11):1423-8. PubMed ID: 25026343 [TBL] [Abstract][Full Text] [Related]
79. Assessment of free fatty acids and cholesteryl esters delivered in liposomes as novel class of antibiotic. Cheung Lam AH; Sandoval N; Wadhwa R; Gilkes J; Do TQ; Ernst W; Chiang SM; Kosina S; Howard Xu H; Fujii G; Porter E BMC Res Notes; 2016 Jul; 9():337. PubMed ID: 27391402 [TBL] [Abstract][Full Text] [Related]
80. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Onyeji CO; Nightingale CH; Marangos MN Infection; 1994; 22(5):338-42. PubMed ID: 7843812 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]