BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31663684)

  • 1. A finite element approach for gastrointestinal tissue mechanics.
    Panda SK; Buist ML
    Int J Numer Method Biomed Eng; 2019 Dec; 35(12):e3269. PubMed ID: 31663684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing finite viscoelastic constitutive relations and variational principles in modeling gastrointestinal soft tissue deformation.
    Sharma S; Buist ML
    J Mech Behav Biomed Mater; 2024 Jul; 155():106560. PubMed ID: 38744120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite nonlinear hyper-viscoelastic model for soft biological tissues.
    Panda SK; Buist ML
    J Biomech; 2018 Mar; 69():121-128. PubMed ID: 29397112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental characterization and finite element implementation of soft tissue nonlinear viscoelasticity.
    Troyer KL; Shetye SS; Puttlitz CM
    J Biomech Eng; 2012 Nov; 134(11):114501. PubMed ID: 23387789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.
    Nakamura Y; Kanbara R; Ochiai KT; Tanaka Y
    J Prosthet Dent; 2014 Oct; 112(4):972-80. PubMed ID: 24819523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient.
    Weickenmeier J; Jabareen M
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1238-62. PubMed ID: 24817477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of residually stressed materials with application to AAA.
    Ahamed T; Dorfmann L; Ogden RW
    J Mech Behav Biomed Mater; 2016 Aug; 61():221-234. PubMed ID: 26874252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical experimentation of the gastrointestinal tract: a systematic review.
    Durcan C; Hossain M; Chagnon G; Perić D; Girard E
    Biomech Model Mechanobiol; 2024 Feb; 23(1):23-59. PubMed ID: 37935880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.
    Wang F; Han Y; Wang B; Peng Q; Huang X; Miller K; Wittek A
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1165-1185. PubMed ID: 29754317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges.
    Noël C
    Med Eng Phys; 2018 Nov; 61():41-50. PubMed ID: 30262138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear elastic material property estimation of lower extremity residual limb tissues.
    Tönük E; Silver-Thorn MB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):43-53. PubMed ID: 12797725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic finite element modeling of poroviscoelastic soft tissue.
    Yang Z; Smolinski P
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):7-16. PubMed ID: 16880152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.
    Seyfi B; Fatouraee N; Imeni M
    J Mech Behav Biomed Mater; 2018 Jan; 77():337-346. PubMed ID: 28965040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.