BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31663721)

  • 1. Monitoring Microalgal Biofilm Growth and Phenol Degradation with Fiber-Optic Sensors.
    Zhong N; Wu Y; Wang Z; Chang H; Zhong D; Xu Y; Hu X; Huang L
    Anal Chem; 2019 Dec; 91(23):15155-15162. PubMed ID: 31663721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor.
    Zhong N; Liao Q; Zhu X; Chen R
    Anal Chem; 2014 Apr; 86(8):3994-4001. PubMed ID: 24697651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical reflective optical fiber sensor for selective detection of phenol in aqueous solutions.
    Wang Z; Zhong N; Chen M; Chang H; Zhong D; Wu Y; Liu H; Xin X; Zhao M; Tang B; Song T; Shi S
    Appl Opt; 2019 Mar; 58(8):2091-2099. PubMed ID: 30874074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.
    Zhong N; Zhao M; Li Y
    Biomed Opt Express; 2016 Feb; 7(2):335-51. PubMed ID: 26977344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing organic matter productivity in microalgal-bacterial biofilm using novel bio-coating.
    Tong CY; Honda K; Derek CJC
    Sci Total Environ; 2024 Jan; 906():167576. PubMed ID: 37804964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor.
    Zhong N; Liao Q; Zhu X; Zhao M
    Appl Opt; 2015 Jan; 54(2):228-35. PubMed ID: 25967621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice straw as microalgal biofilm bio-carrier: Effects of indigenous microorganisms on rice straw and microalgal biomass production.
    Yan H; Zhang Q; Wang Y; Cui X; Liu Y; Yu Z; Xu S; Ruan R
    J Environ Manage; 2023 Sep; 341():118075. PubMed ID: 37141712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide.
    Huang Y; Xiong W; Liao Q; Fu Q; Xia A; Zhu X; Sun Y
    Bioresour Technol; 2016 Dec; 222():367-373. PubMed ID: 27741475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species and material considerations in the formation and development of microalgal biofilms.
    Irving TE; Allen DG
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):283-94. PubMed ID: 21655988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2.
    Zhong N; Zhao M; Zhong L; Liao Q; Zhu X; Luo B; Li Y
    Biosens Bioelectron; 2016 Nov; 85():876-882. PubMed ID: 27311112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an Attenuated Total Reflection Based Fiber-Optic Sensor for Real-time Sensing of Biofilm Formation.
    Orii T; Okazaki T; Hata N; Sugawara K; Rahman FA; Kuramitz H
    Anal Sci; 2017; 33(8):883-887. PubMed ID: 28794323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study of L-Lysine-Stabilized Iron Oxide Nanoparticles (IONPs) on Microalgae Biofilm Formation of Chlorella vulgaris.
    Taghizadeh SM; Ebrahiminezhad A; Raee MJ; Ramezani H; Berenjian A; Ghasemi Y
    Mol Biotechnol; 2022 Jun; 64(6):702-710. PubMed ID: 35099707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient phenol degradation in a batch moving bed biofilm reactor: benefiting from biofilm-enhancing bacteria.
    Irankhah S; Abdi Ali A; Reza Soudi M; Gharavi S; Ayati B
    World J Microbiol Biotechnol; 2018 Oct; 34(11):164. PubMed ID: 30368594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenol biodegradation and simultaneous nitrogen removal using a carbon fiber felt biofilm reactor.
    Chen Y; Liu M; Xu F; Zhu S; Shen S
    Water Sci Technol; 2010; 62(5):1052-9. PubMed ID: 20818045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing carbon dioxide utilization for microalgae biofilm cultivation.
    Blanken W; Schaap S; Theobald S; Rinzema A; Wijffels RH; Janssen M
    Biotechnol Bioeng; 2017 Apr; 114(4):769-776. PubMed ID: 27748511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient Chlorella sp.-Cupriavidus necator microcosm for phenol degradation and its cooperation mechanism.
    Yi T; Shan Y; Huang B; Tang T; Wei W; Quinn NWT
    Sci Total Environ; 2020 Nov; 743():140775. PubMed ID: 32663680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility and advantage of biofilm-electrode reactor for phenol degradation.
    Zhang X; Huang W; Wang X; Gao Y; Lin H
    J Environ Sci (China); 2009; 21(9):1181-5. PubMed ID: 19999963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical device for selective detection of phenol in aqueous solutions.
    Zhong N; Chen M; Wang Z; Xin X; Li B
    Lab Chip; 2018 May; 18(11):1621-1632. PubMed ID: 29766202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological phenol removal using immobilized cells in a pulsed plate bioreactor: effect of dilution rate and influent phenol concentration.
    Vidya Shetty K; Ramanjaneyulu R; Srinikethan G
    J Hazard Mater; 2007 Oct; 149(2):452-9. PubMed ID: 17532562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.