These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 31663750)
1. Excellent Water Lubrication Additives for Silicon Nitride To Achieve Superlubricity under Extreme Conditions. Lin B; Ding M; Sui T; Cui Y; Yan S; Liu X Langmuir; 2019 Nov; 35(46):14861-14869. PubMed ID: 31663750 [TBL] [Abstract][Full Text] [Related]
2. Study on Lubrication and Friction Reduction Properties of ZIF-8 Nanoparticles as Si Sui T; Li L; Lin B; Zhang Y; Zhang B; Yan S Front Chem; 2021; 9():802375. PubMed ID: 34988064 [TBL] [Abstract][Full Text] [Related]
3. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions. Han T; Zhang C; Luo J Langmuir; 2018 Sep; 34(38):11281-11291. PubMed ID: 30175911 [TBL] [Abstract][Full Text] [Related]
4. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive. Ge X; Li J; Zhang C; Luo J Langmuir; 2018 Mar; 34(12):3578-3587. PubMed ID: 29505262 [TBL] [Abstract][Full Text] [Related]
5. Superlubricity and Antiwear Properties of In Situ-Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions. Ge X; Li J; Zhang C; Liu Y; Luo J ACS Appl Mater Interfaces; 2019 Feb; 11(6):6568-6574. PubMed ID: 30657308 [TBL] [Abstract][Full Text] [Related]
6. Superlubricity of 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate Ionic Liquid Induced by Tribochemical Reactions. Ge X; Li J; Zhang C; Wang Z; Luo J Langmuir; 2018 May; 34(18):5245-5252. PubMed ID: 29672065 [TBL] [Abstract][Full Text] [Related]
7. Experimental Study on the Lubrication and Cooling Effect of Graphene in Base Oil for Si Zhang L; Wei X; Wang J; Wu Y; An D; Xi D Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32028687 [TBL] [Abstract][Full Text] [Related]
8. Lithium Citrate Triggered Macroscopic Superlubricity with Near-Zero Wear on an Amorphous Carbon Film. Sun S; Yi S; Li J; Ding Z; Song W; Luo J ACS Appl Mater Interfaces; 2023 Apr; 15(15):19705-19714. PubMed ID: 37018161 [TBL] [Abstract][Full Text] [Related]
9. Macroscale Superlubricity Enabled by Graphene-Coated Surfaces. Zhang Z; Du Y; Huang S; Meng F; Chen L; Xie W; Chang K; Zhang C; Lu Y; Lin CT; Li S; Parkin IP; Guo D Adv Sci (Weinh); 2020 Feb; 7(4):1903239. PubMed ID: 32099768 [TBL] [Abstract][Full Text] [Related]
10. Effect of the Molecular Structure of 1,3-Diketones on the Realization of Oil-Based Superlubricity on Steel/Steel Friction Pairs. Du S; Zhang C; Luo Z Langmuir; 2024 Jan; 40(1):805-817. PubMed ID: 38134349 [TBL] [Abstract][Full Text] [Related]
11. A New Pathway for Superlubricity in a Multilayered MoS Yin X; Jin J; Chen X; Ma T; Zhang C Nano Lett; 2021 Dec; 21(24):10165-10171. PubMed ID: 34889617 [TBL] [Abstract][Full Text] [Related]
12. Macroscale Superlubricity and Polymorphism of Long-Chain Reddyhoff T; Ewen JP; Deshpande P; Frogley MD; Welch MD; Montgomery W ACS Appl Mater Interfaces; 2021 Feb; 13(7):9239-9251. PubMed ID: 33565870 [TBL] [Abstract][Full Text] [Related]
13. High Temperature Tribological Performance of Steel/Copper Friction Pairs Lubricated with a Modified C-WS Li H; Zhu J; Chen Z; Li Z; Meng B Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745429 [TBL] [Abstract][Full Text] [Related]
14. Extreme-Pressure Superlubricity of Polymer Solution Enhanced with Hydrated Salt Ions. Li S; Bai P; Li Y; Jia W; Li X; Meng Y; Ma L; Tian Y Langmuir; 2020 Jun; 36(24):6765-6774. PubMed ID: 32460491 [TBL] [Abstract][Full Text] [Related]
15. Preparation and Tribological Properties of Lanthanum Stearate Modified Lubricating Oil for Wire Rope in a Mine Hoist. Zhang Y; Zhang Q; Peng Y; Wang C; Chang X; Chen G Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640222 [TBL] [Abstract][Full Text] [Related]
16. High-Temperature Superlubricity Realized with Chlorinated-Phenyl and Methyl-Terminated Silicone Oil and Hydrogen-Ion Running-in. Wen X; Bai P; Meng Y; Ma L; Tian Y Langmuir; 2022 Aug; 38(32):10043-10051. PubMed ID: 35915968 [TBL] [Abstract][Full Text] [Related]
17. Macroscale Superlubricity Enabled by the Synergy Effect of Graphene-Oxide Nanoflakes and Ethanediol. Ge X; Li J; Luo R; Zhang C; Luo J ACS Appl Mater Interfaces; 2018 Nov; 10(47):40863-40870. PubMed ID: 30388363 [TBL] [Abstract][Full Text] [Related]
18. Superlubricity of Polyalkylene Glycol Aqueous Solutions Enabled by Ultrathin Layered Double Hydroxide Nanosheets. Wang H; Liu Y; Liu W; Liu Y; Wang K; Li J; Ma T; Eryilmaz OL; Shi Y; Erdemir A; Luo J ACS Appl Mater Interfaces; 2019 Jun; 11(22):20249-20256. PubMed ID: 31083968 [TBL] [Abstract][Full Text] [Related]
19. Superlubricity of Silicon-Based Ceramics Sliding against Hydrogenated Amorphous Carbon in Ultrahigh Vacuum: Mechanisms of Transfer Film Formation. Kuwahara T; Long Y; Sayilan A; Reichenbach T; Martin JM; De Barros Bouchet MI; Moseler M; Moras G ACS Appl Mater Interfaces; 2024 Feb; 16(6):8032-8044. PubMed ID: 38291784 [TBL] [Abstract][Full Text] [Related]
20. Tribological behavior of aluminum-CNT coated metal composite under dry and water lubricated conditions. Kim IY; Lee YZ J Nanosci Nanotechnol; 2011 Jan; 11(1):335-8. PubMed ID: 21446451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]