These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 31664592)
1. Impact of Phase 1 study design on estimation of QT interval prolongation risk using exposure-response analysis. Tsamandouras N; Duvvuri S; Riley S J Pharmacokinet Pharmacodyn; 2019 Dec; 46(6):605-616. PubMed ID: 31664592 [TBL] [Abstract][Full Text] [Related]
2. Relationship between antofloxacin concentration and QT prolongation and estimation of the possible false-positive rate. Liang LY; He YC; Li YF; Yang J; Xu FY; Li LJ; Huang JH; Wang K; Zheng QS Biomed Pharmacother; 2020 Oct; 130():110619. PubMed ID: 32795925 [TBL] [Abstract][Full Text] [Related]
3. Heart rate correction models to detect QT interval prolongation in novel pharmaceutical development. Markert M; Shen R; Trautmann T; Guth B J Pharmacol Toxicol Methods; 2011; 64(1):25-41. PubMed ID: 21635956 [TBL] [Abstract][Full Text] [Related]
4. Scientific white paper on concentration-QTc modeling. Garnett C; Bonate PL; Dang Q; Ferber G; Huang D; Liu J; Mehrotra D; Riley S; Sager P; Tornoe C; Wang Y J Pharmacokinet Pharmacodyn; 2018 Jun; 45(3):383-397. PubMed ID: 29209907 [TBL] [Abstract][Full Text] [Related]
5. Study Design Parameters Affecting Exposure Response Analysis of QT Data: Results From Simulation Studies. Ferber G; Sun Y; Darpo B; Garnett C; Liu J J Clin Pharmacol; 2018 May; 58(5):674-685. PubMed ID: 29420838 [TBL] [Abstract][Full Text] [Related]
6. Modelling PK/QT relationships from Phase I dose-escalation trials for drug combinations and developing quantitative risk assessments of clinically relevant QT prolongations. Sinclair K; Kinable E; Grosch K; Wang J Pharm Stat; 2016 May; 15(3):264-76. PubMed ID: 26991506 [TBL] [Abstract][Full Text] [Related]
7. Performance characteristics for some typical QT study designs under the ICH E-14 guidance. Hutmacher MM; Chapel S; Agin MA; Fleishaker JC; Lalonde RL J Clin Pharmacol; 2008 Feb; 48(2):215-24. PubMed ID: 18199896 [TBL] [Abstract][Full Text] [Related]
8. Operational Characteristics of Linear Concentration-QT Models for Assessing QTc Interval in the Thorough QT and Phase I Clinical Studies. Garnett C; Needleman K; Liu J; Brundage R; Wang Y Clin Pharmacol Ther; 2016 Aug; 100(2):170-8. PubMed ID: 26946218 [TBL] [Abstract][Full Text] [Related]
9. Is a thorough QTc study necessary? The role of modeling and simulation in evaluating the QTc prolongation potential of drugs. Rohatagi S; Carrothers TJ; Kuwabara-Wagg J; Khariton T J Clin Pharmacol; 2009 Nov; 49(11):1284-96. PubMed ID: 19734373 [TBL] [Abstract][Full Text] [Related]
10. Lack of effect of perampanel on QT interval duration: Results from a thorough QT analysis and pooled partial seizure Phase III clinical trials. Yang H; Laurenza A; Williams B; Patten A; Hussein Z; Ferry J Epilepsy Res; 2015 Aug; 114():122-30. PubMed ID: 26088895 [TBL] [Abstract][Full Text] [Related]
11. ILSI-HESI cardiovascular safety subcommittee dataset: an analysis of the statistical properties of QT interval and rate-corrected QT interval (QTc). Chiang AY; Bass AS; Cooper MM; Engwall MJ; Menton RG; Thomas K J Pharmacol Toxicol Methods; 2007; 56(2):95-102. PubMed ID: 17588780 [TBL] [Abstract][Full Text] [Related]
12. Sample size, power calculations, and their implications for the cost of thorough studies of drug induced QT interval prolongation. Malik M; Hnatkova K; Batchvarov V; Gang Y; Smetana P; Camm AJ Pacing Clin Electrophysiol; 2004 Dec; 27(12):1659-69. PubMed ID: 15613131 [TBL] [Abstract][Full Text] [Related]
13. Statistical issues of QT prolongation assessment based on linear concentration modeling. Tsong Y; Shen M; Zhong J; Zhang J J Biopharm Stat; 2008; 18(3):564-84. PubMed ID: 18470764 [TBL] [Abstract][Full Text] [Related]
14. Effect of baseline measurement on the change from baseline in QTc intervals. Tian H; Natarajan J J Biopharm Stat; 2008; 18(3):542-52. PubMed ID: 18470762 [TBL] [Abstract][Full Text] [Related]
15. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. Piotrovsky V AAPS J; 2005 Oct; 7(3):E609-24. PubMed ID: 16353940 [TBL] [Abstract][Full Text] [Related]
16. Drug induced QT prolongation: the measurement and assessment of the QT interval in clinical practice. Isbister GK; Page CB Br J Clin Pharmacol; 2013 Jul; 76(1):48-57. PubMed ID: 23167578 [TBL] [Abstract][Full Text] [Related]
17. Statistical assessment of QT/QTc prolongation based on maximum of correlated normal random variables. Cheng B; Chow SC; Burt D; Cosmatos D J Biopharm Stat; 2008; 18(3):494-501. PubMed ID: 18470758 [TBL] [Abstract][Full Text] [Related]
18. Virtual clinical QT exposure-response studies - A translational computational approach. Aguado-Sierra J; Dominguez-Gomez P; Amar A; Butakoff C; Leitner M; Schaper S; Kriegl JM; Darpo B; Vazquez M; Rast G J Pharmacol Toxicol Methods; 2024; 126():107498. PubMed ID: 38432528 [TBL] [Abstract][Full Text] [Related]
19. Can Bias Evaluation Provide Protection Against False-Negative Results in QT Studies Without a Positive Control Using Exposure-Response Analysis? Ferber G; Zhou M; Dota C; Garnett C; Keirns J; Malik M; Stockbridge N; Darpo B J Clin Pharmacol; 2017 Jan; 57(1):85-95. PubMed ID: 27271102 [TBL] [Abstract][Full Text] [Related]
20. Droperidol and ondansetron-induced QT interval prolongation: a clinical drug interaction study. Charbit B; Alvarez JC; Dasque E; Abe E; Démolis JL; Funck-Brentano C Anesthesiology; 2008 Aug; 109(2):206-12. PubMed ID: 18648229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]