These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 31664790)
1. Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. Wesalo JS; Luo J; Morihiro K; Liu J; Deiters A Chembiochem; 2020 Jan; 21(1-2):141-148. PubMed ID: 31664790 [TBL] [Abstract][Full Text] [Related]
2. Fast phosphine-activated control of protein function using unnatural lysine analogues. Wesalo JS; Deiters A Methods Enzymol; 2020; 638():191-217. PubMed ID: 32416913 [TBL] [Abstract][Full Text] [Related]
3. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability. Xiao Z; Chang JG; Hendriks IA; Sigurðsson JO; Olsen JV; Vertegaal AC Mol Cell Proteomics; 2015 May; 14(5):1419-34. PubMed ID: 25755297 [TBL] [Abstract][Full Text] [Related]
4. Dynamin interacts with members of the sumoylation machinery. Mishra RK; Jatiani SS; Kumar A; Simhadri VR; Hosur RV; Mittal R J Biol Chem; 2004 Jul; 279(30):31445-54. PubMed ID: 15123615 [TBL] [Abstract][Full Text] [Related]
5. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659 [TBL] [Abstract][Full Text] [Related]
6. Modification of cardiac transcription factor Gata6 by SUMO. Chen H; Sun W; Zhu J; Yuan H; Chu M; Wen B Biochimie; 2020 Mar; 170():212-218. PubMed ID: 32017966 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Histone Deacetylases Sumoylation by Immunoprecipitation Techniques. Wagner T; Godmann M; Heinzel T Methods Mol Biol; 2017; 1510():339-351. PubMed ID: 27761833 [TBL] [Abstract][Full Text] [Related]
8. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction. Cooper HJ; Tatham MH; Jaffray E; Heath JK; Lam TT; Marshall AG; Hay RT Anal Chem; 2005 Oct; 77(19):6310-9. PubMed ID: 16194093 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. Goffinont S; Coste F; Prieu-Serandon P; Mance L; Gaudon V; Garnier N; Castaing B; Suskiewicz MJ J Biol Chem; 2023 Jul; 299(7):104870. PubMed ID: 37247759 [TBL] [Abstract][Full Text] [Related]
10. Introduction to Sumoylation. Wilson VG Adv Exp Med Biol; 2017; 963():1-12. PubMed ID: 28197903 [TBL] [Abstract][Full Text] [Related]
11. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy. Kaur K; Park H; Pandey N; Azuma Y; De Guzman RN J Biol Chem; 2017 Jun; 292(24):10230-10238. PubMed ID: 28455449 [TBL] [Abstract][Full Text] [Related]
12. Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain. Mascle XH; Germain-Desprez D; Huynh P; Estephan P; Aubry M J Biol Chem; 2007 Apr; 282(14):10190-202. PubMed ID: 17298944 [TBL] [Abstract][Full Text] [Related]
13. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression. Rohira AD; Chen CY; Allen JR; Johnson DL J Biol Chem; 2013 Jun; 288(26):19288-95. PubMed ID: 23673667 [TBL] [Abstract][Full Text] [Related]
14. Current Status of SUMOylation Inhibitors. Brackett CM; Blagg BSJ Curr Med Chem; 2021; 28(20):3892-3912. PubMed ID: 32778019 [TBL] [Abstract][Full Text] [Related]
15. Protein interactions in the sumoylation cascade: lessons from X-ray structures. Tang Z; Hecker CM; Scheschonka A; Betz H FEBS J; 2008 Jun; 275(12):3003-15. PubMed ID: 18492068 [TBL] [Abstract][Full Text] [Related]
16. Sumoylation of human argonaute 2 at lysine-402 regulates its stability. Sahin U; Lapaquette P; Andrieux A; Faure G; Dejean A PLoS One; 2014; 9(7):e102957. PubMed ID: 25036361 [TBL] [Abstract][Full Text] [Related]
17. Small-molecule inhibitors targeting small ubiquitin-like modifier pathway for the treatment of cancers and other diseases. Hua D; Wu X Eur J Med Chem; 2022 Apr; 233():114227. PubMed ID: 35247754 [TBL] [Abstract][Full Text] [Related]
18. Human Regulatory Protein Ki-1/57 Is a Target of SUMOylation and Affects PML Nuclear Body Formation. Saito Â; Souza EE; Costa FC; Meirelles GV; Gonçalves KA; Santos MT; Bressan GC; McComb ME; Costello CE; Whelan SA; Kobarg J J Proteome Res; 2017 Sep; 16(9):3147-3157. PubMed ID: 28695742 [TBL] [Abstract][Full Text] [Related]
19. SUMOylation attenuates c-Maf-dependent IL-4 expression. Lin BS; Tsai PY; Hsieh WY; Tsao HW; Liu MW; Grenningloh R; Wang LF; Ho IC; Miaw SC Eur J Immunol; 2010 Apr; 40(4):1174-84. PubMed ID: 20127678 [TBL] [Abstract][Full Text] [Related]
20. SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies. Liang YC; Lee CC; Yao YL; Lai CC; Schmitz ML; Yang WM Sci Rep; 2016 May; 6():26509. PubMed ID: 27211601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]