BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 3166481)

  • 21. Maintenance of Quantitative Genetic Variance Under Partial Self-Fertilization, with Implications for Evolution of Selfing.
    Lande R; Porcher E
    Genetics; 2015 Jul; 200(3):891-906. PubMed ID: 25969460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive genetic differentiation in a predominantly self-pollinating species analyzed by transplanting into natural environment, crossbreeding and Q(ST)-F(ST) test.
    Volis S
    New Phytol; 2011 Oct; 192(1):237-248. PubMed ID: 21729087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley.
    Sallam A; Amro A; El-Akhdar A; Dawood MFA; Kumamaru T; Stephen Baenziger P
    Mol Biol Rep; 2018 Dec; 45(6):2441-2453. PubMed ID: 30411192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of population genetic structures of common wild rice (Oryza rufipogon Griff.), as revealed by analyses of quantitative traits, allozymes, and RFLPs.
    Cai HW; Wang XK; Morishima H
    Heredity (Edinb); 2004 May; 92(5):409-17. PubMed ID: 14997180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis of allele frequency change in sunflower crop-wild hybrid populations evolving under natural conditions.
    Corbi J; Baack EJ; Dechaine JM; Seiler G; Burke JM
    Mol Ecol; 2018 Jan; 27(1):233-247. PubMed ID: 28612961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan.
    Baek HJ; Beharav A; Nevo E
    Theor Appl Genet; 2003 Feb; 106(3):397-410. PubMed ID: 12589539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment.
    Obsa BT; Eglinton J; Coventry S; March T; Guillaume M; Le TP; Hayden M; Langridge P; Fleury D
    PLoS One; 2017; 12(5):e0178111. PubMed ID: 28542571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing the rare-alleles model of quantitative variation by artificial selection.
    Kelly JK
    Genetica; 2008 Feb; 132(2):187-98. PubMed ID: 17607507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map.
    N'Diaye A; Haile JK; Cory AT; Clarke FR; Clarke JM; Knox RE; Pozniak CJ
    PLoS One; 2017; 12(1):e0170941. PubMed ID: 28135299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multilocus genetic structure of ancestral Spanish and colonial Californian populations of Avena barbata.
    Pérez de la Vega M; García P; Allard RW
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1202-6. PubMed ID: 1996322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics.
    Saghai Maroof MA; Biyashev RM; Yang GP; Zhang Q; Allard RW
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5466-70. PubMed ID: 8202509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversity analysis and genome-wide association studies of grain shape and eating quality traits in rice (Oryza sativa L.) using DArT markers.
    Mogga M; Sibiya J; Shimelis H; Lamo J; Yao N
    PLoS One; 2018; 13(6):e0198012. PubMed ID: 29856872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for coadaptation in Avena barbata.
    Allard RW; Babbel GR; Clegg MT; Kahler AL
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):3043-8. PubMed ID: 4342975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic and molecular organization of ribosomal DNA (rDNA) variants in wild and cultivated barley.
    Allard RW; Saghai Maroof MA; Zhang Q; Jorgensen RA
    Genetics; 1990 Nov; 126(3):743-51. PubMed ID: 2249766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Habitat-specific natural selection at a flowering-time QTL is a main driver of local adaptation in two wild barley populations.
    Verhoeven KJ; Poorter H; Nevo E; Biere A
    Mol Ecol; 2008 Jul; 17(14):3416-24. PubMed ID: 18573164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Population Genetics Revealed a New Locus That Underwent Positive Selection in Barley.
    Reinert S; Osthoff A; Léon J; Naz AA
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Is the gene the unit of selection? Evidence from two experimental plant populations.
    Clegg MT; Allard RW; Kahler AL
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2474-8. PubMed ID: 4506768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. THE EFFECTS OF FIVE GENERATIONS OF ENFORCED SELFING ON POTENTIAL MALE AND FEMALE FUNCTION IN MIMULUS GUTTATUS.
    Carr DE; Dudash MR
    Evolution; 1997 Dec; 51(6):1797-1807. PubMed ID: 28565122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands.
    Richter-Boix A; Quintela M; Kierczak M; Franch M; Laurila A
    Mol Ecol; 2013 Mar; 22(5):1322-40. PubMed ID: 23294180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The genetic architecture of adaptation under migration-selection balance.
    Yeaman S; Whitlock MC
    Evolution; 2011 Jul; 65(7):1897-911. PubMed ID: 21729046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.