BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31664849)

  • 1. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators.
    Abraham BL; Liyanage W; Nilsson BL
    Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Transition of Self-assembled Hydrogel Fibrils into Crystalline Microtubes Enables a Rational Strategy To Stabilize the Hydrogel State.
    Liyanage W; Brennessel WW; Nilsson BL
    Langmuir; 2015 Sep; 31(36):9933-42. PubMed ID: 26305488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives.
    Abraham BL; Agredo P; Mensah SG; Nilsson BL
    Langmuir; 2022 Dec; 38(50):15494-15505. PubMed ID: 36473193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives.
    Abraham BL; Mensah SG; Gwinnell BR; Nilsson BL
    Soft Matter; 2022 Aug; 18(32):5999-6008. PubMed ID: 35920399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of a Single Atom Affects the Physical Properties of Double Fluorinated Fmoc-Phe Derivatives.
    Aviv M; Cohen-Gerassi D; Orr AA; Misra R; Arnon ZA; Shimon LJW; Shacham-Diamand Y; Tamamis P; Adler-Abramovich L
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility.
    Li W; Hu X; Chen J; Wei Z; Song C; Huang R
    J Mater Sci Mater Med; 2020 Jul; 31(8):73. PubMed ID: 32729101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels.
    Quigley E; Johnson J; Liyanage W; Nilsson BL
    Soft Matter; 2020 Nov; 16(44):10158-10168. PubMed ID: 33035281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly, Hydrogelation, and Nanotube Formation by Cation-Modified Phenylalanine Derivatives.
    Rajbhandary A; Raymond DM; Nilsson BL
    Langmuir; 2017 Jun; 33(23):5803-5813. PubMed ID: 28514156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.
    Liyanage W; Nilsson BL
    Langmuir; 2016 Jan; 32(3):787-99. PubMed ID: 26717444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.
    Rajbhandary A; Nilsson BL
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27696352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Co-Assembly of Two Building Blocks Harnesses Both their Attributes into a Functional Supramolecular Hydrogel.
    Chakraborty P; Aviv M; Netti F; Cohen-Gerassi D; Adler-Abramovich L
    Macromol Biosci; 2022 May; 22(5):e2100439. PubMed ID: 35133711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins.
    Jagrosse ML; Agredo P; Abraham BL; Toriki ES; Nilsson BL
    ACS Biomater Sci Eng; 2023 Feb; 9(2):784-796. PubMed ID: 36693219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Minimalistic Backbone Engineered γ-Phenylalanine for the Formation of Supramolecular Co-Polymer.
    Misra R; Tang Y; Chen Y; Chakraborty P; Netti F; Vijayakanth T; Shimon LJW; Wei G; Adler-Abramovich L
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200223. PubMed ID: 35920234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic interactions regulate the release of small molecules from supramolecular hydrogels.
    Abraham BL; Toriki ES; Tucker NJ; Nilsson BL
    J Mater Chem B; 2020 Aug; 8(30):6366-6377. PubMed ID: 32596699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles.
    Wang T; Ménard-Moyon C; Bianco A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10532-10544. PubMed ID: 38367060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Molecular Weight Supramolecular Hydrogels for Sustained and Localized
    Raymond DM; Abraham BL; Fujita T; Watrous MJ; Toriki ES; Takano T; Nilsson BL
    ACS Appl Bio Mater; 2019 Apr; 2(5):2116-2124. PubMed ID: 34136760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protected Amino Acid-Based Hydrogels Incorporating Carbon Nanomaterials for Near-Infrared Irradiation-Triggered Drug Release.
    Guilbaud-Chéreau C; Dinesh B; Schurhammer R; Collin D; Bianco A; Ménard-Moyon C
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13147-13157. PubMed ID: 30865420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.
    Reddy SM; Shanmugam G; Duraipandy N; Kiran MS; Mandal AB
    Soft Matter; 2015 Nov; 11(41):8126-40. PubMed ID: 26338226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the self-assembly of Fmoc-phenylalanine to hydrogel formation.
    Singh V; Snigdha K; Singh C; Sinha N; Thakur AK
    Soft Matter; 2015 Jul; 11(26):5353-64. PubMed ID: 26059479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.