These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 31664849)

  • 21. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics.
    Sutton S; Campbell NL; Cooper AI; Kirkland M; Frith WJ; Adams DJ
    Langmuir; 2009 Sep; 25(17):10285-91. PubMed ID: 19499945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complementary π-π interactions induce multicomponent coassembly into functional fibrils.
    Ryan DM; Doran TM; Nilsson BL
    Langmuir; 2011 Sep; 27(17):11145-56. PubMed ID: 21815693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogelation Induced by Change in Hydrophobicity of Amino Acid Side Chain in Fmoc-Functionalised Amino Acid: Significance of Sulfur on Hydrogelation.
    Reddy SM; Dorishetty P; Deshpande AP; Shanmugam G
    Chemphyschem; 2016 Jul; 17(14):2170-80. PubMed ID: 27017582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.
    Gong X; Branford-White C; Tao L; Li S; Quan J; Nie H; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():478-86. PubMed ID: 26478335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-L-phenylalanine) peptide motif.
    Fichman G; Adler-Abramovich L; Manohar S; Mironi-Harpaz I; Guterman T; Seliktar D; Messersmith PB; Gazit E
    ACS Nano; 2014 Jul; 8(7):7220-8. PubMed ID: 24936704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural, mechanical, and biological characterization of hierarchical nanofibrous Fmoc-phenylalanine-valine hydrogels for 3D culture of differentiated and mesenchymal stem cells.
    Najafi H; Tamaddon AM; Abolmaali S; Borandeh S; Azarpira N
    Soft Matter; 2021 Jan; 17(1):57-67. PubMed ID: 33001116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation.
    Li Y; Zheng T; Du Y; Zhao B; Patel HP; Boldt R; Auernhammer GK; Fery A; Li J; Thiele J
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):405-412. PubMed ID: 37852026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-proteinogenic amino acid based supramolecular hydrogel material for enhanced cell proliferation.
    Arokianathan JF; Ramya KA; Janeena A; Deshpande AP; Ayyadurai N; Leemarose A; Shanmugam G
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110581. PubMed ID: 31677412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembling N-(9-Fluorenylmethoxycarbonyl)-l-Phenylalanine hydrogel as novel drug carrier.
    Snigdha K; Singh BK; Mehta AS; Tewari RP; Dutta PK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1639-1646. PubMed ID: 27126167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds.
    Jayawarna V; Smith A; Gough JE; Ulijn RV
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):535-7. PubMed ID: 17511646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogels of halogenated Fmoc-short peptides for potential application in tissue engineering.
    Wang Y; Zhang Z; Xu L; Li X; Chen H
    Colloids Surf B Biointerfaces; 2013 Apr; 104():163-8. PubMed ID: 23314490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acid⋅⋅⋅Amide Supramolecular Synthon for Tuning Amino Acid-Based Hydrogels' Properties.
    Veronese E; Pigliacelli C; Bergamaschi G; Terraneo G; Dichiarante V; Metrangolo P
    Chemistry; 2023 Oct; 29(55):e202301743. PubMed ID: 37435732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophobic End-Modulated Amino-Acid-Based Neutral Hydrogelators: Structure-Specific Inclusion of Carbon Nanomaterials.
    Choudhury P; Mandal D; Brahmachari S; Das PK
    Chemistry; 2016 Apr; 22(15):5160-72. PubMed ID: 26916229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels.
    Xie YY; Zhang YW; Qin XT; Liu LP; Wahid F; Zhong C; Jia SR
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111099. PubMed ID: 32408261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels.
    Marchesan S; Waddington L; Easton CD; Winkler DA; Goodall L; Forsythe J; Hartley PG
    Nanoscale; 2012 Nov; 4(21):6752-60. PubMed ID: 22955637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differently N-Capped Analogues of Fmoc-FF.
    Diaferia C; Rosa E; Gallo E; Morelli G; Accardo A
    Chemistry; 2023 May; 29(28):e202300661. PubMed ID: 36877530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties.
    Tang C; Ulijn RV; Saiani A
    Langmuir; 2011 Dec; 27(23):14438-49. PubMed ID: 21995651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembly of novel Fmoc-cardanol compounds into hydrogels - analysis based on rheological, structural and thermal properties.
    Kadeeja A; Joseph S; Abraham JN
    Soft Matter; 2020 Jul; 16(27):6294-6303. PubMed ID: 32462156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.