These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 31664871)

  • 1. Pitch of harmonic complex tones: rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits.
    Su Y; Delgutte B
    J Neurophysiol; 2019 Dec; 122(6):2468-2485. PubMed ID: 31664871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Rate-Place Coding of Resolved Components in Harmonic and Inharmonic Complex Tones in Auditory Midbrain.
    Su Y; Delgutte B
    J Neurosci; 2020 Mar; 40(10):2080-2093. PubMed ID: 31996454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pitch of Harmonic Complex Tones: Rate Coding of Envelope Repetition Rate in the Auditory Midbrain.
    Su Y; Delgutte B
    Acta Acust United Acust; 2018; 104(5):860-864. PubMed ID: 30613198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rabbits use both spectral and temporal cues to discriminate the fundamental frequency of harmonic complexes with missing fundamentals.
    Wagner JD; Gelman A; Hancock KE; Chung Y; Delgutte B
    J Neurophysiol; 2022 Jan; 127(1):290-312. PubMed ID: 34879207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1989 Feb; 61(2):257-68. PubMed ID: 2918354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural representation of harmonic complex tones in primary auditory cortex of the awake monkey.
    Fishman YI; Micheyl C; Steinschneider M
    J Neurosci; 2013 Jun; 33(25):10312-23. PubMed ID: 23785145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal Coding of Voice Pitch Contours in Mandarin Tones.
    Peng F; Innes-Brown H; McKay CM; Fallon JB; Zhou Y; Wang X; Hu N; Hou W
    Front Neural Circuits; 2018; 12():55. PubMed ID: 30087597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch.
    Cariani PA; Delgutte B
    J Neurophysiol; 1996 Sep; 76(3):1717-34. PubMed ID: 8890287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence of stereotypical responses to mistuned complex tones in the inferior colliculus.
    Sinex DG; Li H; Velenovsky DS
    J Neurophysiol; 2005 Nov; 94(5):3523-37. PubMed ID: 16079190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoptimal Perceptual Integration Suggests a Place-Based Representation of Pitch at High Frequencies.
    Lau BK; Mehta AH; Oxenham AJ
    J Neurosci; 2017 Sep; 37(37):9013-9021. PubMed ID: 28821642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses to diotic, dichotic, and alternating phase harmonic stimuli in the inferior colliculus of guinea pigs.
    Shackleton TM; Liu LF; Palmer AR
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):76-90. PubMed ID: 19089495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus.
    Krishna BS; Semple MN
    J Neurophysiol; 2000 Jul; 84(1):255-73. PubMed ID: 10899201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural coding of time-varying interaural time differences and time-varying amplitude in the inferior colliculus.
    Zuk N; Delgutte B
    J Neurophysiol; 2017 Jul; 118(1):544-563. PubMed ID: 28381487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural representation in the auditory midbrain of the envelope of vocalizations based on a peripheral ear model.
    Rode T; Hartmann T; Hubka P; Scheper V; Lenarz M; Lenarz T; Kral A; Lim HH
    Front Neural Circuits; 2013; 7():166. PubMed ID: 24155694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus).
    Osmanski MS; Song X; Wang X
    J Neurosci; 2013 May; 33(21):9161-8. PubMed ID: 23699526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectro-temporal templates unify the pitch percepts of resolved and unresolved harmonics.
    Shamma S; Dutta K
    J Acoust Soc Am; 2019 Feb; 145(2):615. PubMed ID: 30823787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus.
    Wiegrebe L; Meddis R
    J Acoust Soc Am; 2004 Mar; 115(3):1207-18. PubMed ID: 15058342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal representation of the pitch of harmonic complex tones in the auditory nerve.
    Cedolin L; Delgutte B
    J Neurosci; 2010 Sep; 30(38):12712-24. PubMed ID: 20861376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues.
    Wang Y; Abrams KS; Carney LH; Henry KS
    J Neurosci; 2021 Aug; 41(34):7206-7223. PubMed ID: 34266898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.