BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 31664888)

  • 1. The sensorimotor effects of a lower limb proprioception training intervention in individuals with a spinal cord injury.
    Qaiser T; Eginyan G; Chan F; Lam T
    J Neurophysiol; 2019 Dec; 122(6):2364-2371. PubMed ID: 31664888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury.
    Domingo A; Lam T
    J Neuroeng Rehabil; 2014 Dec; 11():167. PubMed ID: 25516305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury.
    Chisholm AE; Qaiser T; Williams AMM; Eginyan G; Lam T
    J Neurophysiol; 2019 Mar; 121(3):1078-1084. PubMed ID: 30726165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury.
    Malik RN; Cote R; Lam T
    J Neurophysiol; 2017 Jan; 117(1):36-46. PubMed ID: 27733593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Lower Extremity Kinesthesia Deficits Using a Robotic Exoskeleton in People With a Spinal Cord Injury.
    Chisholm AE; Domingo A; Jeyasurya J; Lam T
    Neurorehabil Neural Repair; 2016 Mar; 30(3):199-208. PubMed ID: 26089310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying lower limb joint position sense using a robotic exoskeleton: a pilot study.
    Domingo A; Marriott E; de Grave RB; Lam T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975455. PubMed ID: 22275653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower extremity robotic exoskeleton training: Case studies for complete spinal cord injury walking.
    Lemaire ED; Smith AJ; Herbert-Copley A; Sreenivasan V
    NeuroRehabilitation; 2017; 41(1):97-103. PubMed ID: 28505991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvements in skilled walking associated with kinematic adaptations in people with spinal cord injury.
    Malik RN; Eginyan G; Lynn AK; Lam T
    J Neuroeng Rehabil; 2019 Aug; 16(1):107. PubMed ID: 31455357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between lower limb proprioceptive sense and locomotor skill acquisition.
    Qaiser T; Chisholm AE; Lam T
    Exp Brain Res; 2016 Nov; 234(11):3185-3192. PubMed ID: 27380635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The safety and feasibility of a new rehabilitation robotic exoskeleton for assisting individuals with lower extremity motor complete lesions following spinal cord injury (SCI): an observational study.
    Xiang XN; Ding MF; Zong HY; Liu Y; Cheng H; He CQ; He HC
    Spinal Cord; 2020 Jul; 58(7):787-794. PubMed ID: 32034295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
    Maegele M; Müller S; Wernig A; Edgerton VR; Harkema SJ
    J Neurotrauma; 2002 Oct; 19(10):1217-29. PubMed ID: 12427330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors.
    Yeh IL; Holst-Wolf J; Elangovan N; Cuppone AV; Lakshminarayan K; Cappello L; Masia L; Konczak J
    J Neuroeng Rehabil; 2021 May; 18(1):77. PubMed ID: 33971912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.
    Ramanujam A; Cirnigliaro CM; Garbarini E; Asselin P; Pilkar R; Forrest GF
    J Spinal Cord Med; 2018 Sep; 41(5):518-528. PubMed ID: 28427305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assisted movement with proprioceptive stimulation reduces impairment and restores function in incomplete spinal cord injury.
    Backus D; Cordo P; Gillott A; Kandilakis C; Mori M; Raslan AM
    Arch Phys Med Rehabil; 2014 Aug; 95(8):1447-53. PubMed ID: 24685386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of robot assisted gait training on temporal-spatial characteristics of people with spinal cord injuries: A systematic review.
    Hayes SC; James Wilcox CR; Forbes White HS; Vanicek N
    J Spinal Cord Med; 2018 Sep; 41(5):529-543. PubMed ID: 29400988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury.
    Faw TD; Lakhani B; Schmalbrock P; Knopp MV; Lohse KR; Kramer JLK; Liu H; Nguyen HT; Phillips EG; Bratasz A; Fisher LC; Deibert RJ; Boyd LA; McTigue DM; Basso DM
    Exp Neurol; 2021 Dec; 346():113853. PubMed ID: 34464653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.