BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3166490)

  • 41. Conversion of xanthine dehydrogenase to xanthine oxidase occurs during keratinocyte differentiation: modulation by 12-O-tetradecanoylphorbol-13-acetate.
    Reiners JJ; Rupp T
    J Invest Dermatol; 1989 Jul; 93(1):132-5. PubMed ID: 2473135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis by isoelectric focusing of xanthine oxidase and NADH dependent enzymes in rat kidney.
    Candiano G; Garberi A; Bertelli R; Acerbo S; Oleggini R; Ginevri F; Ghiggeri GM
    Appl Theor Electrophor; 1990; 1(4):221-3. PubMed ID: 2098105
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of hypoxia and reoxygenation on the conversion of xanthine dehydrogenase to oxidase in Chinese hamster V79 cells.
    Hasan NM; Cundall RB; Adams GE
    Free Radic Biol Med; 1991; 11(2):179-85. PubMed ID: 1937136
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Mechanisms of the regulation of the conversion of xanthine oxidase in enterocytes exposed to x-irradiation].
    Shelepina EI; Antonov VG; Kozhemiakin LA
    Radiobiologiia; 1990; 30(3):328-31. PubMed ID: 2371390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coordinate modulation of murine hepatic xanthine oxidase activity and the cytochrome P-450 system by interferons.
    Reiners JJ; Cantu AR; Rupp TA
    J Interferon Res; 1990 Apr; 10(2):109-18. PubMed ID: 1692864
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differences in redox and kinetic properties between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase.
    Saito T; Nishino T
    J Biol Chem; 1989 Jun; 264(17):10015-22. PubMed ID: 2722858
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Purification and properties of the NAD+-dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase.
    Waud WR; Rajagopalan KV
    Arch Biochem Biophys; 1976 Feb; 172(2):354-64. PubMed ID: 176939
    [No Abstract]   [Full Text] [Related]  

  • 48. The role of xanthine oxidase in paraquat intoxication.
    Kitazawa Y; Matsubara M; Takeyama N; Tanaka T
    Arch Biochem Biophys; 1991 Jul; 288(1):220-4. PubMed ID: 1654824
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution of xanthine oxidoreductase activity in human tissues--a histochemical and biochemical study.
    Kooij A; Schijns M; Frederiks WM; Van Noorden CJ; James J
    Virchows Arch B Cell Pathol Incl Mol Pathol; 1992; 63(1):17-23. PubMed ID: 1362018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Urate oxidase and xanthine dehydrogenase activities in liver extracts from fish caught in Irish waters.
    Cleare WF; Bree S; Coughlan MP
    Comp Biochem Physiol B; 1976; 54(1):117-9. PubMed ID: 1269224
    [No Abstract]   [Full Text] [Related]  

  • 51. [Control of the xanthine dehydrogenase activity of the kidney by glutaminase (proceedings)].
    Affonso OR; Magalhães MM; Santos LJ; Mitidieri E
    An Acad Bras Cienc; 1978 Mar; 50(1):115. PubMed ID: 666121
    [No Abstract]   [Full Text] [Related]  

  • 52. The influence of lipid peroxidation products (malondialdehyde, 4-hydroxynonenal) on xanthine oxidoreductase prepared from rat liver.
    Haberland A; Schütz AK; Schimke I
    Biochem Pharmacol; 1992 May; 43(10):2117-20. PubMed ID: 1599498
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of xanthine: NAD+ oxidoreductase from liver of toad Bufo viridis and other vertebrates.
    Zakrzewska B; Jezewska MM
    Comp Biochem Physiol B; 1989; 94(2):361-5. PubMed ID: 2591196
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cleavage of folates during ethanol metabolism. Role of acetaldehyde/xanthine oxidase-generated superoxide.
    Shaw S; Jayatilleke E; Herbert V; Colman N
    Biochem J; 1989 Jan; 257(1):277-80. PubMed ID: 2537625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of xanthine oxidase in the interferon-mediated depression of the hepatic cytochrome P-450 system in mice.
    Mannering GJ; Deloria LB; Abbott V
    Cancer Res; 1988 Apr; 48(8):2107-12. PubMed ID: 2450644
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of activation of rat liver microsomal glutathione transferase by noradrenaline and xanthine oxidase.
    Lundqvist G; Morgenstern R
    Biochem Pharmacol; 1992 Apr; 43(8):1725-8. PubMed ID: 1575769
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of cellular oxidases and catalytic iron in the pathogenesis of ethanol-induced liver injury.
    Shaw S; Jayatilleke E
    Life Sci; 1992; 50(26):2045-52. PubMed ID: 1608288
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ethanol-induced iron mobilization: role of acetaldehyde-aldehyde oxidase generated superoxide.
    Shaw S; Jayatilleke E
    Free Radic Biol Med; 1990; 9(1):11-7. PubMed ID: 2170242
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues.
    Wajner M; Harkness RA
    Biochim Biophys Acta; 1989 Apr; 991(1):79-84. PubMed ID: 2713424
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and degradation of xanthine dehydrogenase in chick liver. In vivo and in vitro studies.
    Thompson JM; Nickels JS; Fisher JR
    Biochim Biophys Acta; 1979 May; 568(1):157-76. PubMed ID: 444541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.