BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31665393)

  • 21. Modeling RNA secondary structure folding ensembles using SHAPE mapping data.
    Spasic A; Assmann SM; Bevilacqua PC; Mathews DH
    Nucleic Acids Res; 2018 Jan; 46(1):314-323. PubMed ID: 29177466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Unified Dynamic Programming Framework for the Analysis of Interacting Nucleic Acid Strands: Enhanced Models, Scalability, and Speed.
    Fornace ME; Porubsky NJ; Pierce NA
    ACS Synth Biol; 2020 Oct; 9(10):2665-2678. PubMed ID: 32910644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA covariation at helix-level resolution for the identification of evolutionarily conserved RNA structure.
    Rivas E
    PLoS Comput Biol; 2023 Jul; 19(7):e1011262. PubMed ID: 37450549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments.
    Seemann SE; Gorodkin J; Backofen R
    Nucleic Acids Res; 2008 Nov; 36(20):6355-62. PubMed ID: 18836192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico single strand melting curve: a new approach to identify nucleic acid polymorphisms in Totiviridae.
    Oliveira RA; Almeida RV; Dantas MD; Castro FN; Lima JP; Lanza DC
    BMC Bioinformatics; 2014 Jul; 15(1):243. PubMed ID: 25030031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification and Identification of Non-canonical Base Pairs and Structural Motifs.
    Sarrazin-Gendron R; Waldispühl J; Reinharz V
    Methods Mol Biol; 2024; 2726():143-168. PubMed ID: 38780731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining structure probing data on RNA mutants with evolutionary information reveals RNA-binding interfaces.
    Reinharz V; Ponty Y; Waldispühl J
    Nucleic Acids Res; 2016 Jun; 44(11):e104. PubMed ID: 27095200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA secondary structure prediction using conditional random fields model.
    Subpaiboonkit S; Thammarongtham C; Cutler RW; Chaijaruwanich J
    Int J Data Min Bioinform; 2013; 7(2):118-34. PubMed ID: 23777171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA base-pairing complexity in living cells visualized by correlated chemical probing.
    Mustoe AM; Lama NN; Irving PS; Olson SW; Weeks KM
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24574-24582. PubMed ID: 31744869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence-based identification of 3D structural modules in RNA with RMDetect.
    Cruz JA; Westhof E
    Nat Methods; 2011 Jun; 8(6):513-21. PubMed ID: 21552257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual Roles of the Hemagglutinin Segment-Specific Noncoding Nucleotides in the Extended Duplex Region of the Influenza A Virus RNA Promoter.
    Wang J; Li J; Zhao L; Cao M; Deng T
    J Virol; 2017 Jan; 91(1):. PubMed ID: 27795444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational detection of abundant long-range nucleotide covariation in Drosophila genomes.
    Bindewald E; Shapiro BA
    RNA; 2013 Sep; 19(9):1171-82. PubMed ID: 23887147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian sampling of evolutionarily conserved RNA secondary structures with pseudoknots.
    Doose G; Metzler D
    Bioinformatics; 2012 Sep; 28(17):2242-8. PubMed ID: 22796961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural constraints identified with covariation analysis in ribosomal RNA.
    Shang L; Xu W; Ozer S; Gutell RR
    PLoS One; 2012; 7(6):e39383. PubMed ID: 22724009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capturing alternative secondary structures of RNA by decomposition of base-pairing probabilities.
    Hagio T; Sakuraba S; Iwakiri J; Mori R; Asai K
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):38. PubMed ID: 29504917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-Molecule Correlated Chemical Probing: A Revolution in RNA Structure Analysis.
    Mustoe AM; Weidmann CA; Weeks KM
    Acc Chem Res; 2023 Apr; 56(7):763-775. PubMed ID: 36917683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency and isostericity of RNA base pairs.
    Stombaugh J; Zirbel CL; Westhof E; Leontis NB
    Nucleic Acids Res; 2009 Apr; 37(7):2294-312. PubMed ID: 19240142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Confirmation of the helical structure of the 5'/3' termini of the essential DNA packaging pRNA of phage phi 29.
    Zhang C; Tellinghuisen T; Guo P
    RNA; 1995 Dec; 1(10):1041-50. PubMed ID: 8595559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.