These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31665425)
21. Transcription factor family-specific DNA shape readout revealed by quantitative specificity models. Yang L; Orenstein Y; Jolma A; Yin Y; Taipale J; Shamir R; Rohs R Mol Syst Biol; 2017 Feb; 13(2):910. PubMed ID: 28167566 [TBL] [Abstract][Full Text] [Related]
22. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Khan A; Fornes O; Stigliani A; Gheorghe M; Castro-Mondragon JA; van der Lee R; Bessy A; Chèneby J; Kulkarni SR; Tan G; Baranasic D; Arenillas DJ; Sandelin A; Vandepoele K; Lenhard B; Ballester B; Wasserman WW; Parcy F; Mathelier A Nucleic Acids Res; 2018 Jan; 46(D1):D260-D266. PubMed ID: 29140473 [TBL] [Abstract][Full Text] [Related]
23. Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework. Yang J; Ma A; Hoppe AD; Wang C; Li Y; Zhang C; Wang Y; Liu B; Ma Q Nucleic Acids Res; 2019 Sep; 47(15):7809-7824. PubMed ID: 31372637 [TBL] [Abstract][Full Text] [Related]
24. A systematic, large-scale comparison of transcription factor binding site models. Hombach D; Schwarz JM; Robinson PN; Schuelke M; Seelow D BMC Genomics; 2016 May; 17():388. PubMed ID: 27209209 [TBL] [Abstract][Full Text] [Related]
25. Sequential Integration of Fuzzy Clustering and Expectation Maximization for Transcription Factor Binding Site Identification. Yousefian-Jazi A; Choi J J Comput Biol; 2018 Nov; 25(11):1247-1256. PubMed ID: 30133315 [TBL] [Abstract][Full Text] [Related]
26. A preliminary computational outputs versus experimental results: Application of sTRAP, a biophysical tool for the analysis of SNPs of transcription factor-binding sites. Moradifard S; Saghiri R; Ehsani P; Mirkhani F; Ebrahimi-Rad M Mol Genet Genomic Med; 2020 May; 8(5):e1219. PubMed ID: 32155318 [TBL] [Abstract][Full Text] [Related]
27. MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Arnold P; Erb I; Pachkov M; Molina N; van Nimwegen E Bioinformatics; 2012 Feb; 28(4):487-94. PubMed ID: 22334039 [TBL] [Abstract][Full Text] [Related]
28. A novel convolution attention model for predicting transcription factor binding sites by combination of sequence and shape. Zhang Y; Wang Z; Zeng Y; Liu Y; Xiong S; Wang M; Zhou J; Zou Q Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929739 [TBL] [Abstract][Full Text] [Related]
29. DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape. Ding P; Wang Y; Zhang X; Gao X; Liu G; Yu B Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328639 [TBL] [Abstract][Full Text] [Related]
30. MANTA2, update of the Mongo database for the analysis of transcription factor binding site alterations. Fornes O; Gheorghe M; Richmond PA; Arenillas DJ; Wasserman WW; Mathelier A Sci Data; 2018 Jul; 5():180141. PubMed ID: 30040077 [TBL] [Abstract][Full Text] [Related]
31. SalMotifDB: a tool for analyzing putative transcription factor binding sites in salmonid genomes. Mulugeta TD; Nome T; To TH; Gundappa MK; Macqueen DJ; Våge DI; Sandve SR; Hvidsten TR BMC Genomics; 2019 Sep; 20(1):694. PubMed ID: 31477007 [TBL] [Abstract][Full Text] [Related]
32. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data. Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199 [TBL] [Abstract][Full Text] [Related]
33. Discovering protein-DNA binding sequence patterns using association rule mining. Leung KS; Wong KC; Chan TM; Wong MH; Lee KH; Lau CK; Tsui SK Nucleic Acids Res; 2010 Oct; 38(19):6324-37. PubMed ID: 20529874 [TBL] [Abstract][Full Text] [Related]
34. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences. Chen ZY; Guo XJ; Chen ZX; Chen WY; Wang JR Biosci Biotechnol Biochem; 2017 Jun; 81(6):1125-1135. PubMed ID: 28485207 [TBL] [Abstract][Full Text] [Related]
35. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Mathelier A; Fornes O; Arenillas DJ; Chen CY; Denay G; Lee J; Shi W; Shyr C; Tan G; Worsley-Hunt R; Zhang AW; Parcy F; Lenhard B; Sandelin A; Wasserman WW Nucleic Acids Res; 2016 Jan; 44(D1):D110-5. PubMed ID: 26531826 [TBL] [Abstract][Full Text] [Related]
36. Sequence-Specific Structural Features and Solvation Properties of Transcription Factor Binding DNA Motifs: Insights from Molecular Dynamics Simulation. Patra P; Gao YQ J Phys Chem B; 2022 Nov; 126(45):9187-9206. PubMed ID: 36322688 [TBL] [Abstract][Full Text] [Related]
37. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces. Sebastian A; Contreras-Moreira B Bioinformatics; 2014 Jan; 30(2):258-65. PubMed ID: 24234003 [TBL] [Abstract][Full Text] [Related]
38. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Hume MA; Barrera LA; Gisselbrecht SS; Bulyk ML Nucleic Acids Res; 2015 Jan; 43(Database issue):D117-22. PubMed ID: 25378322 [TBL] [Abstract][Full Text] [Related]
39. DNAproDB: an expanded database and web-based tool for structural analysis of DNA-protein complexes. Sagendorf JM; Markarian N; Berman HM; Rohs R Nucleic Acids Res; 2020 Jan; 48(D1):D277-D287. PubMed ID: 31612957 [TBL] [Abstract][Full Text] [Related]
40. A widespread role of the motif environment in transcription factor binding across diverse protein families. Dror I; Golan T; Levy C; Rohs R; Mandel-Gutfreund Y Genome Res; 2015 Sep; 25(9):1268-80. PubMed ID: 26160164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]