BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31665440)

  • 1. Atomistic insight into the kinetic pathways for Watson-Crick to Hoogsteen transitions in DNA.
    Vreede J; Pérez de Alba Ortíz A; Bolhuis PG; Swenson DWH
    Nucleic Acids Res; 2019 Dec; 47(21):11069-11076. PubMed ID: 31665440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread transient Hoogsteen base pairs in canonical duplex DNA with variable energetics.
    Alvey HS; Gottardo FL; Nikolova EN; Al-Hashimi HM
    Nat Commun; 2014 Sep; 5():4786. PubMed ID: 25185517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Landscape and Pathways for Transitions between Watson-Crick and Hoogsteen Base Pairing in DNA.
    Chakraborty D; Wales DJ
    J Phys Chem Lett; 2018 Jan; 9(1):229-241. PubMed ID: 29240425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-dissociative structural transitions of the Watson-Crick and reverse Watson-Crick А·Т DNA base pairs into the Hoogsteen and reverse Hoogsteen forms.
    Brovarets' OO; Tsiupa KS; Hovorun DM
    Sci Rep; 2018 Jul; 8(1):10371. PubMed ID: 29991693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds.
    François JC; Hélène C
    Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-Energy Landscape of a pH-Modulated G·C Base Pair Transition from Watson-Crick to Hoogsteen State in Duplex DNA.
    Kim H; Yang C; Pak Y
    J Chem Theory Comput; 2021 Apr; 17(4):2556-2565. PubMed ID: 33689343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force-Field-Dependent DNA Breathing Dynamics: A Case Study of Hoogsteen Base Pairing in A6-DNA.
    Stone SE; Ray D; Andricioaei I
    J Chem Inf Model; 2022 Dec; 62(24):6749-6761. PubMed ID: 36049242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence dependence of transient Hoogsteen base pairing in DNA.
    Pérez de Alba Ortíz A; Vreede J; Ensing B
    PLoS Comput Biol; 2022 May; 18(5):e1010113. PubMed ID: 35617357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life.
    Takahashi S; Sugimoto N
    Acc Chem Res; 2021 May; 54(9):2110-2120. PubMed ID: 33591181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alchemical Free-Energy Calculations of Watson-Crick and Hoogsteen Base Pairing Interconversion in DNA.
    Geronimo I; De Vivo M
    J Chem Theory Comput; 2022 Nov; 18(11):6966-6973. PubMed ID: 36201305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Probing of Watson-Crick/Hoogsteen Breathing in a DNA Duplex Containing N1-Methylated Adenine.
    Yang C; Kim E; Lim M; Pak Y
    J Chem Theory Comput; 2019 Jan; 15(1):751-761. PubMed ID: 30501194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free Energy Landscape and Conformational Kinetics of Hoogsteen Base Pairing in DNA vs. RNA.
    Ray D; Andricioaei I
    Biophys J; 2020 Oct; 119(8):1568-1579. PubMed ID: 32946766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-DNA?
    Rangadurai A; Zhou H; Merriman DK; Meiser N; Liu B; Shi H; Szymanski ES; Al-Hashimi HM
    Nucleic Acids Res; 2018 Nov; 46(20):11099-11114. PubMed ID: 30285154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient Hoogsteen base pairs in canonical duplex DNA.
    Nikolova EN; Kim E; Wise AA; O'Brien PJ; Andricioaei I; Al-Hashimi HM
    Nature; 2011 Feb; 470(7335):498-502. PubMed ID: 21270796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into Watson-Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A.
    Sathyamoorthy B; Shi H; Zhou H; Xue Y; Rangadurai A; Merriman DK; Al-Hashimi HM
    Nucleic Acids Res; 2017 May; 45(9):5586-5601. PubMed ID: 28369571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interstrand cross-linking by bizelesin produces a Watson-Crick to Hoogsteen base-pairing transition region in d(CGTAATTACG)2.
    Seaman FC; Hurley L
    Biochemistry; 1993 Nov; 32(47):12577-85. PubMed ID: 8251475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].
    Brovarets' OO
    Ukr Biokhim Zh (1999); 2013; 85(4):98-103. PubMed ID: 24319979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(1):28-55. PubMed ID: 24261751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.