These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31665486)

  • 1. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement.
    Paul MJ; Watson A; Griffiths CA
    J Exp Bot; 2020 Apr; 71(7):2270-2280. PubMed ID: 31665486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting carbon for crop yield and drought resilience.
    Griffiths CA; Paul MJ
    J Sci Food Agric; 2017 Nov; 97(14):4663-4671. PubMed ID: 28653336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.
    Paul MJ; Oszvald M; Jesus C; Rajulu C; Griffiths CA
    J Exp Bot; 2017 Jul; 68(16):4455-4462. PubMed ID: 28981769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene-based mapping of trehalose biosynthetic pathway genes reveals association with source- and sink-related yield traits in a spring wheat panel.
    Lyra DH; Griffiths CA; Watson A; Joynson R; Molero G; Igna AA; Hassani-Pak K; Reynolds MP; Hall A; Paul MJ
    Food Energy Secur; 2021 Aug; 10(3):e292. PubMed ID: 34594548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trehalose 6-phosphate signalling and impact on crop yield.
    Paul MJ; Watson A; Griffiths CA
    Biochem Soc Trans; 2020 Oct; 48(5):2127-2137. PubMed ID: 33005918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source/sink interactions underpin crop yield: the case for trehalose 6-phosphate/SnRK1 in improvement of wheat.
    Lawlor DW; Paul MJ
    Front Plant Sci; 2014; 5():418. PubMed ID: 25202319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What are the regulatory targets for intervention in assimilate partitioning to improve crop yield and resilience?
    Paul MJ
    J Plant Physiol; 2021 Nov; 266():153537. PubMed ID: 34619557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield.
    Liang XG; Gao Z; Fu XX; Chen XM; Shen S; Zhou SL
    Front Plant Sci; 2023; 14():1206829. PubMed ID: 37731984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of global dimming on crop yields is determined by the source-sink imbalance of carbon during grain filling.
    Shao L; Liu Z; Li H; Zhang Y; Dong M; Guo X; Zhang H; Huang B; Ni R; Li G; Cai C; Chen W; Luo W; Yin X
    Glob Chang Biol; 2021 Feb; 27(3):689-708. PubMed ID: 33216414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soybean Yield Formation Physiology - A Foundation for Precision Breeding Based Improvement.
    Vogel JT; Liu W; Olhoft P; Crafts-Brandner SJ; Pennycooke JC; Christiansen N
    Front Plant Sci; 2021; 12():719706. PubMed ID: 34868106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How can we make plants grow faster? A source-sink perspective on growth rate.
    White AC; Rogers A; Rees M; Osborne CP
    J Exp Bot; 2016 Jan; 67(1):31-45. PubMed ID: 26466662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a sink-source interaction model for the growth of short-rotation coppice willow and in silico exploration of genotype×environment effects.
    Cerasuolo M; Richter GM; Richard B; Cunniff J; Girbau S; Shield I; Purdy S; Karp A
    J Exp Bot; 2016 Feb; 67(3):961-77. PubMed ID: 26663471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source-sink manipulations differentially affect carbon and nitrogen dynamics, fruit metabolites and yield of Sacha Inchi plants.
    Cai Z; Xie T; Xu J
    BMC Plant Biol; 2021 Mar; 21(1):160. PubMed ID: 33784996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop transformation and the challenge to increase yield potential.
    Sinclair TR; Purcell LC; Sneller CH
    Trends Plant Sci; 2004 Feb; 9(2):70-5. PubMed ID: 15102372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breeding for high water-use efficiency.
    Condon AG; Richards RA; Rebetzke GJ; Farquhar GD
    J Exp Bot; 2004 Nov; 55(407):2447-60. PubMed ID: 15475373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen.
    Sadras VO; Richards RA
    J Exp Bot; 2014 May; 65(8):1981-95. PubMed ID: 24638898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield.
    Obata T; Klemens PAW; Rosado-Souza L; Schlereth A; Gisel A; Stavolone L; Zierer W; Morales N; Mueller LA; Zeeman SC; Ludewig F; Stitt M; Sonnewald U; Neuhaus HE; Fernie AR
    Plant J; 2020 Jun; 102(6):1202-1219. PubMed ID: 31950549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security.
    Braun DM; Wang L; Ruan YL
    J Exp Bot; 2014 Apr; 65(7):1713-35. PubMed ID: 24347463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source-Sink Regulation in Crops under Water Deficit.
    Rodrigues J; Inzé D; Nelissen H; Saibo NJM
    Trends Plant Sci; 2019 Jul; 24(7):652-663. PubMed ID: 31109763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.