These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31665690)

  • 1. Halide removal from water using silver doped magnetic-microparticles.
    Polo AMS; Lopez-Peñalver JJ; Sánchez-Polo M; Rivera-Utrilla J; López-Ramón MV; Rozalén M
    J Environ Manage; 2020 Jan; 253():109731. PubMed ID: 31665690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halide removal from aqueous solution by novel silver-polymeric materials.
    A M S P; I VG; M SP; U VG; J J LP; J RU
    Sci Total Environ; 2016 Dec; 573():1125-1131. PubMed ID: 27697745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halide removal from waters by silver nanoparticles and hydrogen peroxide.
    Polo AMS; Lopez-Peñalver JJ; Rivera-Utrilla J; Von Gunten U; Sánchez-Polo M
    Sci Total Environ; 2017 Dec; 607-608():649-657. PubMed ID: 28709099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ag-doped carbon aerogels for removing halide ions in water treatment.
    Sánchez-Polo M; Rivera-Utrilla J; Salhi E; von Gunten U
    Water Res; 2007 Mar; 41(5):1031-7. PubMed ID: 16970974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions.
    Lou X; Xiao D; Fang C; Wang Z; Liu J; Guo Y; Lu S
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4778-85. PubMed ID: 26538259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.
    Sánchez-Polo M; Rivera-Utrilla J; Salhi E; von Gunten U
    J Colloid Interface Sci; 2006 Aug; 300(1):437-41. PubMed ID: 16696995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective removal of bromide and iodide from natural waters using a novel AgCl-SPAC composite at environmentally relevant conditions.
    Ateia M; Erdem CU; Ersan MS; Ceccato M; Karanfil T
    Water Res; 2019 Jun; 156():168-178. PubMed ID: 30913420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyethyleneimine-templated Ag nanoclusters: a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength.
    Qu F; Li NB; Luo HQ
    Anal Chem; 2012 Dec; 84(23):10373-9. PubMed ID: 23134573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective determination of chloride and bromide ions in serum by cyclic voltammetry.
    Arai K; Kusu F; Noguchi N; Takamura K; Osawa H
    Anal Biochem; 1996 Aug; 240(1):109-13. PubMed ID: 8811885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and zeta-potentials of silver halide single crystals: pH-dependence in comparison to particle systems.
    Selmani A; Lützenkirchen J; Kallay N; Preočanin T
    J Phys Condens Matter; 2014 Jun; 26(24):244104. PubMed ID: 24863080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroanalytical Sensing of Bromides Using Radiolytically Synthesized Silver Nanoparticle Electrocatalysts.
    Milikić J; Stoševski I; Krstić J; Kačarević-Popović Z; Miljanić Š; Šljukić B
    J Anal Methods Chem; 2017; 2017():2028417. PubMed ID: 29181221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent surface plasmon resonance spectroscopy of silver nanoprisms in the presence of halide ions.
    Hsu MS; Cao YW; Wang HW; Pan YS; Lee BH; Huang CL
    Chemphyschem; 2010 Jun; 11(8):1742-8. PubMed ID: 20217886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence quenching of coumarins by halide ions.
    Giri R
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Mar; 60(4):757-63. PubMed ID: 15036085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion binding properties of human serum albumin from halide ion quadrupole relaxation.
    Norne JE; Hjalmarsson SG; Lindman B; Zeppezauer M
    Biochemistry; 1975 Jul; 14(15):3401-8. PubMed ID: 1148208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TOF-SIMS imaging of halide/thiocyanate anions and hydrogen sulfide in mouse kidney sections using silver-deposited plates.
    Akahoshi N; Ishizaki I; Naya M; Maekawa T; Yamazoe S; Horiuchi T; Kajimura M; Ohashi Y; Suematsu M; Ishii I
    Anal Bioanal Chem; 2012 Feb; 402(5):1859-64. PubMed ID: 22200926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient and stable Ag-AgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation.
    Wang X; Lim TT
    Water Res; 2013 Aug; 47(12):4148-58. PubMed ID: 23562562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A disposable screen-printed silver strip sensor for single drop analysis of halide in biological samples.
    Chiu MH; Cheng WL; Muthuraman G; Hsu CT; Chung HH; Zen JM
    Biosens Bioelectron; 2009 Jun; 24(10):3008-13. PubMed ID: 19342215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ternary Silver Halide Nanocrystals.
    Abeyweera SC; Rasamani KD; Sun Y
    Acc Chem Res; 2017 Jul; 50(7):1754-1761. PubMed ID: 28654267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of bromide from surface waters using silver impregnated activated carbon.
    Chen C; Apul OG; Karanfil T
    Water Res; 2017 Apr; 113():223-230. PubMed ID: 28226281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscope characterization of AgBr heterojunctions with silver carboxylates and their influence on the morphology of developed silver particles in thermally developed photomaterials.
    Bokhonov BB; Burleva LP; Whitcomb DR; Sahyun MR
    Microsc Res Tech; 1998 Jul; 42(2):152-72. PubMed ID: 9728887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.