These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31665813)

  • 1. The crystal structure of the naturally split gp41-1 intein guides the engineering of orthogonal split inteins from cis-splicing inteins.
    Beyer HM; Mikula KM; Li M; Wlodawer A; Iwaï H
    FEBS J; 2020 May; 287(9):1886-1898. PubMed ID: 31665813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based engineering and comparison of novel split inteins for protein ligation.
    Aranko AS; Oeemig JS; Zhou D; Kajander T; Wlodawer A; Iwaï H
    Mol Biosyst; 2014 May; 10(5):1023-34. PubMed ID: 24574026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR and crystal structures of the Pyrococcus horikoshii RadA intein guide a strategy for engineering a highly efficient and promiscuous intein.
    Oeemig JS; Zhou D; Kajander T; Wlodawer A; Iwaï H
    J Mol Biol; 2012 Aug; 421(1):85-99. PubMed ID: 22560994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved residues that modulate protein trans-splicing of Npu DnaE split intein.
    Wu Q; Gao Z; Wei Y; Ma G; Zheng Y; Dong Y; Liu Y
    Biochem J; 2014 Jul; 461(2):247-55. PubMed ID: 24758175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An atypical naturally split intein engineered for highly efficient protein labeling.
    Thiel IV; Volkmann G; Pietrokovski S; Mootz HD
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1306-10. PubMed ID: 24382817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for protein trans-splicing by a bacterial intein-like domain--protein ligation without nucleophilic side chains.
    Aranko AS; Oeemig JS; Iwaï H
    FEBS J; 2013 Jul; 280(14):3256-69. PubMed ID: 23621571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-terminal chemical protein labeling using the naturally split GOS-TerL intein.
    Bachmann AL; Mootz HD
    J Pept Sci; 2017 Jul; 23(7-8):624-630. PubMed ID: 28332258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
    Aranko AS; Züger S; Buchinger E; Iwaï H
    PLoS One; 2009; 4(4):e5185. PubMed ID: 19365564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved protein splicing using embedded split inteins.
    Gramespacher JA; Stevens AJ; Thompson RE; Muir TW
    Protein Sci; 2018 Mar; 27(3):614-619. PubMed ID: 29226478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Atypical Mechanism of Split Intein Molecular Recognition and Folding.
    Stevens AJ; Sekar G; Gramespacher JA; Cowburn D; Muir TW
    J Am Chem Soc; 2018 Sep; 140(37):11791-11799. PubMed ID: 30156841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources.
    Carvajal-Vallejos P; Pallissé R; Mootz HD; Schmidt SR
    J Biol Chem; 2012 Aug; 287(34):28686-96. PubMed ID: 22753413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations.
    Dassa B; Amitai G; Caspi J; Schueler-Furman O; Pietrokovski S
    Biochemistry; 2007 Jan; 46(1):322-30. PubMed ID: 17198403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and Structural Characterization of an Unusual and Naturally Split Class 3 Intein.
    Hoffmann S; Terhorst TME; Singh RK; Kümmel D; Pietrokovski S; Mootz HD
    Chembiochem; 2021 Jan; 22(2):364-373. PubMed ID: 32813312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature's recipe for splitting inteins.
    Aranko AS; Wlodawer A; Iwaï H
    Protein Eng Des Sel; 2014 Aug; 27(8):263-71. PubMed ID: 25096198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic two-piece and three-piece split inteins for protein trans-splicing.
    Sun W; Yang J; Liu XQ
    J Biol Chem; 2004 Aug; 279(34):35281-6. PubMed ID: 15194682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-inducible Protein Splicing in cis and trans by Inteins from Extremely Halophilic Archaea as a Novel Protein-Engineering Tool.
    Ciragan A; Aranko AS; Tascon I; Iwaï H
    J Mol Biol; 2016 Nov; 428(23):4573-4588. PubMed ID: 27720988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Split Gp41-1 intein splicing as a model to evaluate the cellular location of the oncosuppressor Maspin in an in vitro model of osteosarcoma.
    Mariano A; Di Cristofano S; Raimondo D; Scotto d'Abusco A
    Cell Biochem Funct; 2024 Mar; 42(2):e3987. PubMed ID: 38509770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins.
    Lin Y; Li M; Song H; Xu L; Meng Q; Liu XQ
    PLoS One; 2013; 8(4):e59516. PubMed ID: 23593141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of an intein from the split dnaE gene of Synechocystis sp. PCC6803 reveal the catalytic model without the penultimate histidine and the mechanism of zinc ion inhibition of protein splicing.
    Sun P; Ye S; Ferrandon S; Evans TC; Xu MQ; Rao Z
    J Mol Biol; 2005 Nov; 353(5):1093-105. PubMed ID: 16219320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.