These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31666319)

  • 1. Timing and specificity of cotranslational nascent protein modification in bacteria.
    Yang CI; Hsieh HH; Shan SO
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23050-23060. PubMed ID: 31666319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosome-nascent Chain Interaction Regulates N-terminal Protein Modification.
    Yang CI; Kim J; Shan SO
    J Mol Biol; 2022 May; 434(9):167535. PubMed ID: 35278477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit.
    Bhakta S; Akbar S; Sengupta J
    J Mol Biol; 2019 Mar; 431(7):1426-1439. PubMed ID: 30753870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformylation of nascent peptide chains on the ribosome.
    Bögeholz LAK; Mercier E; Wintermeyer W; Rodnina MV
    Methods Enzymol; 2023; 684():39-70. PubMed ID: 37230593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic control of nascent protein biogenesis by peptide deformylase.
    Bögeholz LAK; Mercier E; Wintermeyer W; Rodnina MV
    Sci Rep; 2021 Dec; 11(1):24457. PubMed ID: 34961771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotranslational processing mechanisms: towards a dynamic 3D model.
    Giglione C; Fieulaine S; Meinnel T
    Trends Biochem Sci; 2009 Aug; 34(8):417-26. PubMed ID: 19647435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex.
    Hsieh HH; Lee JH; Chandrasekar S; Shan SO
    Nat Commun; 2020 Nov; 11(1):5840. PubMed ID: 33203865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence.
    Raue U; Oellerer S; Rospert S
    J Biol Chem; 2007 Mar; 282(11):7809-16. PubMed ID: 17229726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic enzyme docking to the ribosome coordinates N-terminal processing with polypeptide folding.
    Sandikci A; Gloge F; Martinez M; Mayer MP; Wade R; Bukau B; Kramer G
    Nat Struct Mol Biol; 2013 Jul; 20(7):843-50. PubMed ID: 23770820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into the interplay of protein biogenesis factors with the 70S ribosome.
    Akbar S; Bhakta S; Sengupta J
    Structure; 2021 Jul; 29(7):755-767.e4. PubMed ID: 33761323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of a nascent peptide on the ribosome.
    Hardesty B; Kramer G
    Prog Nucleic Acid Res Mol Biol; 2001; 66():41-66. PubMed ID: 11051761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding.
    Zhao T; Chen YM; Li Y; Wang J; Chen S; Gao N; Qian W
    Genome Biol; 2021 Jan; 22(1):16. PubMed ID: 33402206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of cotranslational ubiquitination and quality control at the ribosome.
    Duttler S; Pechmann S; Frydman J
    Mol Cell; 2013 May; 50(3):379-93. PubMed ID: 23583075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of ribosome bound nascent polypeptides in vitro to identify translational pause sites along mRNA.
    Jha SS; Komar AA
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotranslational Folding of Proteins on the Ribosome.
    Liutkute M; Samatova E; Rodnina MV
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31936054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes.
    Gamerdinger M; Deuerling E
    Trends Biochem Sci; 2024 Feb; 49(2):105-118. PubMed ID: 37919225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tethering creates unusual kinetics for ribosome-associated chaperones with nascent chains.
    Witt SN
    Protein Pept Lett; 2009; 16(6):631-4. PubMed ID: 19519521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks.
    Breiman A; Fieulaine S; Meinnel T; Giglione C
    Biochim Biophys Acta; 2016 May; 1864(5):531-50. PubMed ID: 26555180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotranslational Biogenesis of Membrane Proteins in Bacteria.
    Mercier E; Wang X; Bögeholz LAK; Wintermeyer W; Rodnina MV
    Front Mol Biosci; 2022; 9():871121. PubMed ID: 35573737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.