These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31666507)

  • 1. Diamond growth from organic compounds in hydrous fluids deep within the Earth.
    Frezzotti ML
    Nat Commun; 2019 Oct; 10(1):4952. PubMed ID: 31666507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blue boron-bearing diamonds from Earth's lower mantle.
    Smith EM; Shirey SB; Richardson SH; Nestola F; Bullock ES; Wang J; Wang W
    Nature; 2018 Aug; 560(7716):84-87. PubMed ID: 30068951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.
    Weiss Y; McNeill J; Pearson DG; Nowell GM; Ottley CJ
    Nature; 2015 Aug; 524(7565):339-42. PubMed ID: 26289205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled deep-mantle carbon-water cycle: Evidence from lower-mantle diamonds.
    Wang W; Tschauner O; Huang S; Wu Z; Meng Y; Bechtel H; Mao HK
    Innovation (Camb); 2021 May; 2(2):100117. PubMed ID: 34557764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The growth of lithospheric diamonds.
    Bureau H; Remusat L; Esteve I; Pinti DL; Cartigny P
    Sci Adv; 2018 Jun; 4(6):eaat1602. PubMed ID: 29881779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of diamond in the Earth's mantle.
    Stachel T; Harris JW
    J Phys Condens Matter; 2009 Sep; 21(36):364206. PubMed ID: 21832312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced methane-bearing fluids as a source for diamond.
    Matjuschkin V; Woodland AB; Frost DJ; Yaxley GM
    Sci Rep; 2020 Apr; 10(1):6961. PubMed ID: 32332772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diamond formation in an electric field under deep Earth conditions.
    Palyanov YN; Borzdov YM; Sokol AG; Bataleva YV; Kupriyanov IN; Reutsky VN; Wiedenbeck M; Sobolev NV
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth.
    Horita J; Polyakov VB
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):31-6. PubMed ID: 25512520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A look inside of diamond-forming media in deep subduction zones.
    Dobrzhinetskaya LF; Wirth R; Green HW
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9128-32. PubMed ID: 17389388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox-freezing and nucleation of diamond via magnetite formation in the Earth's mantle.
    Jacob DE; Piazolo S; Schreiber A; Trimby P
    Nat Commun; 2016 Jun; 7():11891. PubMed ID: 27327434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melting of sediments in the deep mantle produces saline fluid inclusions in diamonds.
    Förster MW; Foley SF; Marschall HR; Alard O; Buhre S
    Sci Adv; 2019 May; 5(5):eaau2620. PubMed ID: 31149629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metamorphic microdiamond formation is controlled by water activity, phase transitions and temperature.
    Kotková J; Fedortchouk Y; Wirth R; Whitehouse MJ
    Sci Rep; 2021 Apr; 11(1):7694. PubMed ID: 33833325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanodiamond finding in the hyblean shallow mantle xenoliths.
    Simakov SK; Kouchi A; Mel'nik NN; Scribano V; Kimura Y; Hama T; Suzuki N; Saito H; Yoshizawa T
    Sci Rep; 2015 Jun; 5():10765. PubMed ID: 26030133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mantle ultrapotassic fluids in diamond formation.
    Palyanov YN; Shatsky VS; Sobolev NV; Sokol AG
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9122-7. PubMed ID: 17379668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diamondites: evidence for a distinct tectono-thermal diamond-forming event beneath the Kaapvaal craton.
    Mikhail S; McCubbin FM; Jenner FE; Shirey SB; Rumble D; Bowden R
    Contrib Mineral Petrol; 2019; 174(8):71. PubMed ID: 31523094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diamond formation due to a pH drop during fluid-rock interactions.
    Sverjensky DA; Huang F
    Nat Commun; 2015 Nov; 6():8702. PubMed ID: 26529259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
    Walter MJ; Kohn SC; Araujo D; Bulanova GP; Smith CB; Gaillou E; Wang J; Steele A; Shirey SB
    Science; 2011 Oct; 334(6052):54-7. PubMed ID: 21921159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oceanic and super-deep continental diamonds share a transition zone origin and mantle plume transportation.
    Doucet LS; Li ZX; Gamal El Dien H
    Sci Rep; 2021 Aug; 11(1):16958. PubMed ID: 34417509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.