These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31666761)

  • 21. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.
    Dana J; Maiti S; Tripathi VS; Ghosh HN
    Chemistry; 2018 Feb; 24(10):2418-2425. PubMed ID: 29193394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Shell Thickness on Photoluminescence and Optical Activity in Chiral CdSe/CdS Core/Shell Quantum Dots.
    Purcell-Milton F; Visheratina AK; Kuznetsova VA; Ryan A; Orlova AO; Gun'ko YK
    ACS Nano; 2017 Sep; 11(9):9207-9214. PubMed ID: 28820937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversible Electrochemical Control over Photoexcited Luminescence of Core/Shell CdSe/ZnS Quantum Dot Film.
    Li B; Lu M; Liu W; Zhu X; He X; Yang Y; Yang Q
    Nanoscale Res Lett; 2017 Dec; 12(1):626. PubMed ID: 29247304
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ideal CdSe/CdS Core/Shell Nanocrystals Enabled by Entropic Ligands and Their Core Size-, Shell Thickness-, and Ligand-Dependent Photoluminescence Properties.
    Zhou J; Zhu M; Meng R; Qin H; Peng X
    J Am Chem Soc; 2017 Nov; 139(46):16556-16567. PubMed ID: 29094943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetics of Nonradiative Surface Trap States in Nanoparticles Monitored by Time-of-Flight Photoconduction Measurements on Nanoparticle-Polymer Blends.
    Guo X; Gong Q; Borowiec J; Zhang S; Han S; Zhang M; Willis M; Kreouzis T; Yu K
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37184-37192. PubMed ID: 31423778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment.
    Pu C; Peng X
    J Am Chem Soc; 2016 Jul; 138(26):8134-42. PubMed ID: 27312799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers.
    Liao C; Tang L; Gao X; Xu R; Zhang H; Yu Y; Lu C; Cui Y; Zhang J
    Nanoscale; 2015 Dec; 7(48):20607-13. PubMed ID: 26592756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Manipulating Charge Transfer from Core to Shell in CdSe/CdS/Au Heterojunction Quantum Dots.
    Liu E; Zhu H; Yi J; Kobbekaduwa K; Adhikari P; Liu J; Shi Y; Zhang J; Li H; Oprisan A; Rao AM; Sanabria H; Chen O; Gao J
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48551-48555. PubMed ID: 31782302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hot-Electron-Induced Photochemical Properties of CdSe/ZnSe Core/Shell Quantum Dots under an Ambient Environment.
    Zhang J; Li J; Ye Z; Cui J; Peng X
    J Am Chem Soc; 2023 Jun; 145(25):13938-13949. PubMed ID: 37310052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deposition of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shells around CdSeTe alloyed core quantum dots: effects on optical properties.
    Adegoke O; Nyokong T; Forbes PB
    Luminescence; 2016 May; 31(3):694-703. PubMed ID: 26333473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots.
    Philbin JP; Rabani E
    J Phys Chem Lett; 2020 Jul; 11(13):5132-5138. PubMed ID: 32513003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-Room Temperature Synthesis of Core/Shell-Structured Quantum Dots.
    Kim J; Kang E; Son J; Cheong IW; Joo J
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7146-52. PubMed ID: 26716300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic Evidence for the Contribution of Holes to the Bleach of Cd-Chalcogenide Quantum Dots.
    Grimaldi G; Geuchies JJ; van der Stam W; du Fossé I; Brynjarsson B; Kirkwood N; Kinge S; Siebbeles LDA; Houtepen AJ
    Nano Lett; 2019 May; 19(5):3002-3010. PubMed ID: 30938530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness.
    Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM
    Front Chem; 2018; 6():567. PubMed ID: 30515380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Luminance enhancement of color stabilized organic light-emitting devices with an active layer containing CdSe/CdS/ZnS core/shell/shell quantum dots.
    Kim KH; Park SJ; Jeon YP; Kim TW
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8352-5. PubMed ID: 25958527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological Synthesis of CdS/CdSe Core/Shell Nanoparticles and Its Application in Quantum Dot Sensitized Solar Cells.
    Órdenes-Aenishanslins N; Anziani-Ostuni G; Quezada CP; Espinoza-González R; Bravo D; Pérez-Donoso JM
    Front Microbiol; 2019; 10():1587. PubMed ID: 31354676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions of exciton fine structure and hole trapping on the hole state filling effect in the transient absorption spectra of CdSe quantum dots.
    He S; Li Q; Jin T; Lian T
    J Chem Phys; 2022 Feb; 156(5):054704. PubMed ID: 35135264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved Characteristics of CdSe/CdS/ZnS Core-Shell Quantum Dots Using an Oleylamine-Modified Process.
    Chang KP; Yeh YC; Wu CJ; Yen CC; Wuu DS
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wavefunction engineering for efficient photoinduced-electron transfer in CuInS
    Sun J; An L; Xue G; Li X
    Nanotechnology; 2020 May; 31(21):215408. PubMed ID: 32040949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoassisted synthesis of CdSe and core-shell CdSe/CdS quantum dots.
    Lin YW; Hsieh MM; Liu CP; Chang HT
    Langmuir; 2005 Jan; 21(2):728-34. PubMed ID: 15641847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.