These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31666804)

  • 1. A cell death assay in barley and wheat protoplasts for identification and validation of matching pathogen AVR effector and plant NLR immune receptors.
    Saur IML; Bauer S; Lu X; Schulze-Lefert P
    Plant Methods; 2019; 15():118. PubMed ID: 31666804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.
    Lu X; Kracher B; Saur IM; Bauer S; Ellwood SR; Wise R; Yaeno T; Maekawa T; Schulze-Lefert P
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6486-E6495. PubMed ID: 27702901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-reactivity of a rice NLR immune receptor to distinct effectors from the rice blast pathogen
    Varden FA; Saitoh H; Yoshino K; Franceschetti M; Kamoun S; Terauchi R; Banfield MJ
    J Biol Chem; 2019 Aug; 294(35):13006-13016. PubMed ID: 31296569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight into barley MLA immune receptor activation.
    Crean EE; Bilstein-Schloemer M; Maekawa T; Schulze-Lefert P; Saur IML
    J Exp Bot; 2023 Sep; 74(18):5854-5869. PubMed ID: 37474129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural polymorphisms within a common powdery mildew effector scaffold as a driver of coevolution with cereal immune receptors.
    Cao Y; Kümmel F; Logemann E; Gebauer JM; Lawson AW; Yu D; Uthoff M; Keller B; Jirschitzka J; Baumann U; Tsuda K; Chai J; Schulze-Lefert P
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2307604120. PubMed ID: 37523523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae.
    Sánchez-Martín J; Keller B
    Curr Opin Plant Biol; 2021 Aug; 62():102053. PubMed ID: 34052730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed effector screening for recognition by endogenous resistance genes using positive defense reporters in wheat protoplasts.
    Wilson S; Dagvadorj B; Tam R; Murphy L; Schulz-Kroenert S; Heng N; Crean E; Greenwood J; Rathjen JP; Schwessinger B
    New Phytol; 2024 Mar; 241(6):2621-2636. PubMed ID: 38282212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of NLR-triggered immunity across plant lineages.
    Maekawa T; Kracher B; Vernaldi S; Ver Loren van Themaat E; Schulze-Lefert P
    Proc Natl Acad Sci U S A; 2012 Dec; 109(49):20119-23. PubMed ID: 23175786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors.
    Liu Y; Zhang X; Yuan G; Wang D; Zheng Y; Ma M; Guo L; Bhadauria V; Peng YL; Liu J
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34702740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caveats of Using Bacterial Type Three Secretion Assays for Validating Fungal Avirulence Effectors in Wheat.
    Jensen C; Korolev A; Corredor-Moreno P; Minter F; Dodds PN; Saunders DGO
    Mol Plant Microbe Interact; 2022 Dec; 35(12):1061-1066. PubMed ID: 36445162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnaporthe oryzae pathotype Triticum (MoT) can act as a heterologous expression system for fungal effectors with high transcript abundance in wheat.
    Jensen C; Saunders DGO
    Sci Rep; 2023 Jan; 13(1):108. PubMed ID: 36596834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat.
    Bourras S; Kunz L; Xue M; Praz CR; Müller MC; Kälin C; Schläfli M; Ackermann P; Flückiger S; Parlange F; Menardo F; Schaefer LK; Ben-David R; Roffler S; Oberhaensli S; Widrig V; Lindner S; Isaksson J; Wicker T; Yu D; Keller B
    Nat Commun; 2019 May; 10(1):2292. PubMed ID: 31123263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering Specificity and Autoactivity of Plant Immune Receptors Sr33 and Sr50 Via a Rational Engineering Approach.
    Tamborski J; Seong K; Liu F; Staskawicz BJ; Krasileva KV
    Mol Plant Microbe Interact; 2023 Jul; 36(7):434-446. PubMed ID: 36867580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The allelic rice immune receptor Pikh confers extended resistance to strains of the blast fungus through a single polymorphism in the effector binding interface.
    De la Concepcion JC; Maidment JHR; Longya A; Xiao G; Franceschetti M; Banfield MJ
    PLoS Pathog; 2021 Mar; 17(3):e1009368. PubMed ID: 33647072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of specificity-defining amino acids of the wheat immune receptor Pm2 and powdery mildew effector AvrPm2.
    Manser B; Koller T; Praz CR; Roulin AC; Zbinden H; Arora S; Steuernagel B; Wulff BBH; Keller B; Sánchez-Martín J
    Plant J; 2021 May; 106(4):993-1007. PubMed ID: 33629439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple pairs of allelic MLA immune receptor-powdery mildew AVR
    Saur IM; Bauer S; Kracher B; Lu X; Franzeskakis L; Müller MC; Sabelleck B; Kümmel F; Panstruga R; Maekawa T; Schulze-Lefert P
    Elife; 2019 Feb; 8():. PubMed ID: 30777147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein engineering expands the effector recognition profile of a rice NLR immune receptor.
    De la Concepcion JC; Franceschetti M; MacLean D; Terauchi R; Kamoun S; Banfield MJ
    Elife; 2019 Sep; 8():. PubMed ID: 31535976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of Cell Death Induction by Wheat Stem Rust Resistance Protein Sr35 and Its Matching Effector AvrSr35.
    Bolus S; Akhunov E; Coaker G; Dubcovsky J
    Mol Plant Microbe Interact; 2020 Feb; 33(2):308-319. PubMed ID: 31556346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of the
    Ortiz D; de Guillen K; Cesari S; Chalvon V; Gracy J; Padilla A; Kroj T
    Plant Cell; 2017 Jan; 29(1):156-168. PubMed ID: 28087830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense.
    Maidment JHR; Franceschetti M; Maqbool A; Saitoh H; Jantasuriyarat C; Kamoun S; Terauchi R; Banfield MJ
    J Biol Chem; 2021; 296():100371. PubMed ID: 33548226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.