These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31667015)

  • 1. Strategies of elite Chinese gymnasts in coping with landing impact from backward somersault.
    Wu C; Hao W; Mei Q; Xiao X; Li X; Sun W
    PeerJ; 2019; 7():e7914. PubMed ID: 31667015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical and neuromuscular strategies on backward somersault landing in artistic gymnastics: A case study.
    Wu CL; Hao WY; He W; Xiao XF; Li XH; Sun W
    Math Biosci Eng; 2019 Jun; 16(5):5862-5876. PubMed ID: 31499742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greater lower limb flexion in gymnastic landings is associated with reduced landing force: a repeated measures study.
    Slater A; Campbell A; Smith A; Straker L
    Sports Biomech; 2015 Mar; 14(1):45-56. PubMed ID: 25895434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower extremity control and dynamics during backward angular impulse generation in backward translating tasks.
    Mathiyakom W; McNitt-Gray JL; Wilcox R
    Exp Brain Res; 2006 Mar; 169(3):377-88. PubMed ID: 16273396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landing from different heights: Biomechanical and neuromuscular strategies in trained gymnasts and untrained prepubescent girls.
    Christoforidou Α; Patikas DA; Bassa E; Paraschos I; Lazaridis S; Christoforidis C; Kotzamanidis C
    J Electromyogr Kinesiol; 2017 Feb; 32():1-8. PubMed ID: 27863284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the lower extremities during drop landings from three heights.
    McNitt-Gray JL
    J Biomech; 1993 Sep; 26(9):1037-46. PubMed ID: 8408086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-flight trunk flexion and extension altered segment and lower extremity joint movements and subsequent landing mechanics.
    Davis DJ; Hinshaw TJ; Critchley ML; Dai B
    J Sci Med Sport; 2019 Aug; 22(8):955-961. PubMed ID: 30902539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV; Smith JL
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of spinal posture signatures and ground reaction forces during landing in elite female gymnasts.
    Wade M; Campbell A; Smith A; Norcott J; O'Sullivan P
    J Appl Biomech; 2012 Dec; 28(6):677-86. PubMed ID: 22661081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of elbow extensors to landing forces during jump downs in cats.
    McKinley PA; Smith JL; Gregor RJ
    Exp Brain Res; 1983; 49(2):218-28. PubMed ID: 6832259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regression relationships of landing height with ground reaction forces, knee flexion angles, angular velocities and joint powers during double-leg landing.
    Yeow CH; Lee PV; Goh JC
    Knee; 2009 Oct; 16(5):381-6. PubMed ID: 19250828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing.
    Blackburn JT; Padua DA
    Clin Biomech (Bristol, Avon); 2008 Mar; 23(3):313-9. PubMed ID: 18037546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of landing stiffness on joint kinetics and energetics in the lower extremity.
    Devita P; Skelly WA
    Med Sci Sports Exerc; 1992 Jan; 24(1):108-15. PubMed ID: 1548984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury.
    Podraza JT; White SC
    Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force.
    McNitt-Gray JL; Hester DM; Mathiyakom W; Munkasy BA
    J Biomech; 2001 Nov; 34(11):1471-82. PubMed ID: 11672722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings.
    Aizawa J; Ohji S; Koga H; Masuda T; Yagishita K
    J Phys Ther Sci; 2016 Aug; 28(8):2316-21. PubMed ID: 27630422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze behavior of trampoline gymnasts during a back tuck somersault.
    Natrup J; Bramme J; de Lussanet MHE; Boström KJ; Lappe M; Wagner H
    Hum Mov Sci; 2020 Apr; 70():102589. PubMed ID: 32217208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The need for muscle co-contraction prior to a landing.
    Yeadon MR; King MA; Forrester SE; Caldwell GE; Pain MT
    J Biomech; 2010 Jan; 43(2):364-9. PubMed ID: 19840881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower extremity biomechanics during the landing of a stop-jump task.
    Yu B; Lin CF; Garrett WE
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):297-305. PubMed ID: 16378667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.