These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31667350)

  • 1. Co-Robotic Cane: A New Robotic Navigation Aid for the Visually Impaired.
    Ye C; Hong S; Qian X; Wu W
    IEEE Syst Man Cybern Mag; 2016 Apr; 2(2):33-42. PubMed ID: 31667350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 6-DOF Pose Estimation of a Robotic Navigation Aid by Tracking Visual and Geometric Features.
    Ye C; Hong S; Tamjidi A
    IEEE Trans Autom Sci Eng; 2015 Oct; 12(4):1169-1180. PubMed ID: 26924949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-D Object Recognition of a Robotic Navigation Aid for the Visually Impaired.
    Ye C; Qian X
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):441-450. PubMed ID: 28880185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plane-Aided Visual-Inertial Odometry for 6-DOF Pose Estimation of a Robotic Navigation Aid.
    Zhang HE; Ye C
    IEEE Access; 2020; 8():90042-90051. PubMed ID: 33747673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision.
    Slade P; Tambe A; Kochenderfer MJ
    Sci Robot; 2021 Oct; 6(59):eabg6594. PubMed ID: 34644159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Improved Point Cloud Descriptor for Vision Based Robotic Grasping System.
    Wang F; Liang C; Ru C; Cheng H
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Indoor Wayfinding System Based on Geometric Features Aided Graph SLAM for the Visually Impaired.
    Zhang H; Ye C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1592-1604. PubMed ID: 28320671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 6-DOF Navigation Method based on Iterative Closest Imaging Point Algorithm.
    Shi S; You Z; Zhao K; Wang Z; Ouyang C; Cao Y
    Sci Rep; 2017 Dec; 7(1):17414. PubMed ID: 29234130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Object Recognition and Registration for Robotic Grasping Systems Using a Modified Viewpoint Feature Histogram.
    Chen CS; Chen PC; Hsu CM
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27886080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of voice navigation system for the visually impaired by using IC tags.
    Takatori N; Nojima K; Matsumoto M; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5181-4. PubMed ID: 17945882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monocular-Based 6-Degree of Freedom Pose Estimation Technology for Robotic Intelligent Grasping Systems.
    Liu T; Guo Y; Yang S; Yin S; Zhu J
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28216555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Data Annotation for 6-DoF AI-Based Navigation Algorithm Development.
    Apud Baca JG; Jantos T; Theuermann M; Hamdad MA; Steinbrener J; Weiss S; Almer A; Perko R
    J Imaging; 2021 Nov; 7(11):. PubMed ID: 34821867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Recognizing transparent objects for laboratory automation].
    Vincze M; Weibel JB; Thalhammer S; Gupta H; Ausserlechner P
    Elektrotech Informationstechnik; 2023; 140(6):519-529. PubMed ID: 37868354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assistive Grasping Based on Laser-point Detection with Application to Wheelchair-mounted Robotic Arms.
    Zhong M; Zhang Y; Yang X; Yao Y; Guo J; Wang Y; Liu Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Virtual White Cane Network for navigating people with visual impairment.
    Gao Y; Chandrawanshi R; Nau AC; Tse ZT
    Proc Inst Mech Eng H; 2015 Sep; 229(9):681-8. PubMed ID: 26334037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the navigation system for the visually impaired by using white cane.
    Hirahara Y; Sakurai Y; Shiidu Y; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4893-6. PubMed ID: 17945865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Smart Cane Based on 2D LiDAR and RGB-D Camera Sensor-Realizing Navigation and Obstacle Recognition.
    Mai C; Chen H; Zeng L; Li Z; Liu G; Qiao Z; Qu Y; Li L; Li L
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Monocular Indoor Positioning of a Robotic Vehicle with a Floorplan.
    Noonan J; Rotstein H; Geva A; Rivlin E
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30717361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Path Planning and Obstacle Avoidance Based on High-Precision Mapping and Positioning.
    Zhang F; Li L; Xu P; Zhang P
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter.
    Alatise MB; Hancke GP
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28934102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.