These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 31667591)
41. Dynamics of Th17 associating cytokines in Cryptosporidium parvum-infected mice. Zhao GH; Fang YQ; Ryan U; Guo YX; Wu F; Du SZ; Chen DK; Lin Q Parasitol Res; 2016 Feb; 115(2):879-87. PubMed ID: 26593737 [TBL] [Abstract][Full Text] [Related]
42. [Electron microscopic research on cryptosporidia. III. Parasite-host relations]. Beĭer TV; Sidorenko NV Tsitologiia; 1991; 33(1):18-23. PubMed ID: 1866791 [TBL] [Abstract][Full Text] [Related]
43. B cells are required for the induction of intestinal inflammatory lesions in TCRalpha-deficient mice persistently infected with Cryptosporidium parvum. Waters WR; Palmer MV; Wannemuehler MJ; Sacco RE; Harp JA J Parasitol; 2000 Oct; 86(5):1073-7. PubMed ID: 11128483 [TBL] [Abstract][Full Text] [Related]
44. [Cellular interactions in the intracellular parasitism of cryptosporidia. I. The effect of Cryptosporidium parvum on the phosphatase activity in the small intestine enterocytes of experimentally infected newborn rat pups]. Beĭer TV; Sidorenko NV; Svezhova NV Tsitologiia; 1995; 37(8):829-37. PubMed ID: 8669134 [TBL] [Abstract][Full Text] [Related]
45. NF-kappaB-mediated expression of iNOS promotes epithelial defense against infection by Cryptosporidium parvum in neonatal piglets. Gookin JL; Chiang S; Allen J; Armstrong MU; Stauffer SH; Finnegan C; Murtaugh MP Am J Physiol Gastrointest Liver Physiol; 2006 Jan; 290(1):G164-74. PubMed ID: 16123198 [TBL] [Abstract][Full Text] [Related]
46. The role of Cryptosporidium parvum-derived phospholipase in intestinal epithelial cell invasion. Pollok RC; McDonald V; Kelly P; Farthing MJ Parasitol Res; 2003 Jun; 90(3):181-6. PubMed ID: 12783305 [TBL] [Abstract][Full Text] [Related]
47. Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal brush border membrane. Wong TP; Debnam ES; Leung PS J Physiol; 2007 Oct; 584(Pt 2):613-23. PubMed ID: 17702818 [TBL] [Abstract][Full Text] [Related]
48. Enterocyte-innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Gullicksrud JA; Sateriale A; Engiles JB; Gibson AR; Shaw S; Hutchins ZA; Martin L; Christian DA; Taylor GA; Yamamoto M; Beiting DP; Striepen B; Hunter CA Mucosal Immunol; 2022 Feb; 15(2):362-372. PubMed ID: 34750455 [TBL] [Abstract][Full Text] [Related]
49. Cryptosporidiosis-induced impairment of ion transport and Na+-glucose absorption in adult immunocompromised mice. Kapel N; Huneau JF; Magne D; Tomé D; Gobert JG J Infect Dis; 1997 Sep; 176(3):834-7. PubMed ID: 9291348 [TBL] [Abstract][Full Text] [Related]
50. Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Fei J; Wu H; Su J; Jin C; Li N; Guo Y; Feng Y; Xiao L Parasit Vectors; 2018 May; 11(1):312. PubMed ID: 29792229 [TBL] [Abstract][Full Text] [Related]
51. Sugar transport and glut transporter expression in a variety of human immunodeficiency virus-1 (HIV-1) chronically infected target cell lines. Caro C; Colby-Germinario S; Brenner B; Oliveira M; Wainberg MA; Germinario RJ Int J Biochem Cell Biol; 1998 Sep; 30(9):1031-8. PubMed ID: 9785466 [TBL] [Abstract][Full Text] [Related]
52. Involvement of Cryptosporidium parvum Cdg7_FLc_1000 RNA in the Attenuation of Intestinal Epithelial Cell Migration via Trans-Suppression of Host Cell SMPD3. Ming Z; Gong AY; Wang Y; Zhang XT; Li M; Mathy NW; Strauss-Soukup JK; Chen XM J Infect Dis; 2017 Dec; 217(1):122-133. PubMed ID: 28961856 [TBL] [Abstract][Full Text] [Related]
53. Temporal characterization of cardiac expression of glucose transporters SGLT and GLUT in an experimental model of myocardial infarction. Sánchez-Más J; Saura-Guillén E; Asensio-López MC; Soriano-Filiu Á; Carmen Sánchez-Pérez M; Hernandez-Martinez AM; Lax A; Pascual-Figal D Diabetes Metab; 2019 Apr; 45(2):201-204. PubMed ID: 29097004 [No Abstract] [Full Text] [Related]
54. Neutrophils do not mediate the pathophysiological sequelae of Cryptosporidium parvum infection in neonatal piglets. Zadrozny LM; Stauffer SH; Armstrong MU; Jones SL; Gookin JL Infect Immun; 2006 Oct; 74(10):5497-505. PubMed ID: 16988224 [TBL] [Abstract][Full Text] [Related]
55. Effects of Cryptosporidium parvum infection in Peruvian children: growth faltering and subsequent catch-up growth. Checkley W; Epstein LD; Gilman RH; Black RE; Cabrera L; Sterling CR Am J Epidemiol; 1998 Sep; 148(5):497-506. PubMed ID: 9737562 [TBL] [Abstract][Full Text] [Related]
56. Cryptosporidium parvum: the course of Cryptosporidium parvum infection in C57BL/6 mice co-infected with the nematode Heligmosomoides bakeri. Bednarska M; Bajer A; Sinski E Exp Parasitol; 2008 Sep; 120(1):21-8. PubMed ID: 18522859 [TBL] [Abstract][Full Text] [Related]
57. Multiple pathways for glucose phosphate transport and utilization support growth of Cryptosporidium parvum. Xu R; Beatty WL; Greigert V; Witola WH; Sibley LD Nat Commun; 2024 Jan; 15(1):380. PubMed ID: 38191884 [TBL] [Abstract][Full Text] [Related]
58. Delivery of Parasite RNA Transcripts Into Infected Epithelial Cells During Cryptosporidium Infection and Its Potential Impact on Host Gene Transcription. Wang Y; Gong AY; Ma S; Chen X; Li Y; Su CJ; Norall D; Chen J; Strauss-Soukup JK; Chen XM J Infect Dis; 2017 Feb; 215(4):636-643. PubMed ID: 28007919 [TBL] [Abstract][Full Text] [Related]
59. Comparison of the expression and spatial localization of glucose transporters in the rat, bovine and human lens. Lim JC; Perwick RD; Li B; Donaldson PJ Exp Eye Res; 2017 Aug; 161():193-204. PubMed ID: 28625822 [TBL] [Abstract][Full Text] [Related]
60. Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Hashim A; Mulcahy G; Bourke B; Clyne M Infect Immun; 2006 Jan; 74(1):99-107. PubMed ID: 16368962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]