These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 31667842)
1. Effect of Fe:ligand ratios on hydroponic conditions and calcareous soil in Solanum lycopersicum L. and Glycine max L. fertilized with heptagluconate and gluconate. Islas-Valdez S; López-Rayo S; Arcos J; Menéndez N; Lucena JJ J Sci Food Agric; 2020 Feb; 100(3):1106-1117. PubMed ID: 31667842 [TBL] [Abstract][Full Text] [Related]
2. Implications of the Mn:ligand ratio for Mn uptake by Glycine max L. plants fertilized with heptagluconate and gluconate complexes. Islas-Valdez S; López-Rayo S; Lucena JJ J Sci Food Agric; 2021 Aug; 101(11):4662-4671. PubMed ID: 33491224 [TBL] [Abstract][Full Text] [Related]
3. Leonardite iron humate and synthetic iron chelate mixtures in Glycine max nutrition. Cieschi MT; Lucena JJ J Sci Food Agric; 2021 Aug; 101(10):4207-4219. PubMed ID: 33423272 [TBL] [Abstract][Full Text] [Related]
4. Timing for a sustainable fertilisation of Glycine max by using HBED/Fe Martín-Fernández C; López-Rayo S; Hernández-Apaolaza L; Lucena JJ J Sci Food Agric; 2017 Jul; 97(9):2773-2781. PubMed ID: 27754551 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of Iron Ethylenediamine-N,N'-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe Alcañiz S; Jordá JD; Cerdán M J Agric Food Chem; 2017 Jan; 65(2):253-259. PubMed ID: 27992188 [TBL] [Abstract][Full Text] [Related]
6. Iron and Humic Acid Accumulation on Soybean Roots Fertilized with Leonardite Iron Humates under Calcareous Conditions. Cieschi MT; Lucena JJ J Agric Food Chem; 2018 Dec; 66(51):13386-13396. PubMed ID: 30507177 [TBL] [Abstract][Full Text] [Related]
7. Chemical evaluation of HBED/Fe(3+) and the novel HJB/Fe(3+) chelates as fertilizers to alleviate iron chlorosis. López-Rayo S; Hernández D; Lucena JJ J Agric Food Chem; 2009 Sep; 57(18):8504-13. PubMed ID: 19689133 [TBL] [Abstract][Full Text] [Related]
8. Calcareous soil interactions of the iron(III) chelates of DPH and Azotochelin and its application on amending iron chlorosis in soybean (Glycine max). Ferreira CMH; Sousa CA; Sanchis-Pérez I; López-Rayo S; Barros MT; Soares HMVM; Lucena JJ Sci Total Environ; 2019 Jan; 647():1586-1593. PubMed ID: 30180362 [TBL] [Abstract][Full Text] [Related]
9. Response of soybean plants to the application of synthetic and biodegradable Fe chelates and Fe complexes. Martín-Fernández C; Solti Á; Czech V; Kovács K; Fodor F; Gárate A; Hernández-Apaolaza L; Lucena JJ Plant Physiol Biochem; 2017 Sep; 118():579-588. PubMed ID: 28787660 [TBL] [Abstract][Full Text] [Related]
10. Potential use of biodegradable chelate N-(1,2-dicarboxyethyl)-D,L-aspartic acid/Fe3+ as an Fe fertilizer. Villén M; García-Arsuaga A; Lucena JJ J Agric Food Chem; 2007 Jan; 55(2):402-7. PubMed ID: 17227071 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean. Bin LM; Weng L; Bugter MH J Agric Food Chem; 2016 Nov; 64(44):8273-8281. PubMed ID: 27690423 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Fe-leonardite complexes as novel natural iron fertilizers. Kovács K; Czech V; Fodor F; Solti A; Lucena JJ; Santos-Rosell S; Hernández-Apaolaza L J Agric Food Chem; 2013 Dec; 61(50):12200-10. PubMed ID: 24224795 [TBL] [Abstract][Full Text] [Related]
13. [S,S]-EDDS/Fe: A new chelate for the environmentally sustainable correction of iron chlorosis in calcareous soil. López-Rayo S; Sanchis-Pérez I; Ferreira CMH; Lucena JJ Sci Total Environ; 2019 Jan; 647():1508-1517. PubMed ID: 30180356 [TBL] [Abstract][Full Text] [Related]
14. Performance of soil-applied FeEDDHA isomers in delivering Fe to soybean plants in relation to the moment of application. Schenkeveld WD; Reichwein AM; Bugter MH; Temminghoff EJ; van Riemsdijk WH J Agric Food Chem; 2010 Dec; 58(24):12833-9. PubMed ID: 21090566 [TBL] [Abstract][Full Text] [Related]
15. Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA) isomers by strategy I and II plants. Cerdán M; Alcañiz S; Juárez M; Jordá JD; Bermúdez D J Agric Food Chem; 2006 Feb; 54(4):1387-91. PubMed ID: 16478264 [TBL] [Abstract][Full Text] [Related]
16. Influence of pH, iron source, and Fe/ligand ratio on iron speciation in lignosulfonate complexes studied using Mössbauer spectroscopy. Implications on their fertilizer properties. Carrasco J; Kovács K; Czech V; Fodor F; Lucena JJ; Vértes A; Hernández-Apaolaza L J Agric Food Chem; 2012 Apr; 60(13):3331-40. PubMed ID: 22394577 [TBL] [Abstract][Full Text] [Related]
17. Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant. Hasegawa H; Rahman MM; Kadohashi K; Takasugi Y; Tate Y; Maki T; Rahman MA Plant Physiol Biochem; 2012 Sep; 58():205-11. PubMed ID: 22841976 [TBL] [Abstract][Full Text] [Related]
18. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers. López-Rayo S; Lucena JJ; Laghi L; Cremonini MA J Agric Food Chem; 2011 Dec; 59(24):13110-6. PubMed ID: 22077518 [TBL] [Abstract][Full Text] [Related]
19. Effect of tris(3-hydroxy-4-pyridinonate) iron(III) complexes on iron uptake and storage in soybean (Glycine max L.). Santos CS; Carvalho SM; Leite A; Moniz T; Roriz M; Rangel AO; Rangel M; Vasconcelos MW Plant Physiol Biochem; 2016 Sep; 106():91-100. PubMed ID: 27156133 [TBL] [Abstract][Full Text] [Related]
20. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Radzki W; Gutierrez Mañero FJ; Algar E; Lucas García JA; García-Villaraco A; Ramos Solano B Antonie Van Leeuwenhoek; 2013 Sep; 104(3):321-30. PubMed ID: 23812968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]