These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31668028)
1. Contribution of speckle noise in near-infrared spectroscopy measurements. Ortega-Martinez A; Zimmermann B; Cheng X; Li X; Yucel MA; Boas DA J Biomed Opt; 2019 Oct; 24(10):1-6. PubMed ID: 31668028 [TBL] [Abstract][Full Text] [Related]
2. Further improvement in reducing superficial contamination in NIRS using double short separation measurements. Gagnon L; Yücel MA; Boas DA; Cooper RJ Neuroimage; 2014 Jan; 85 Pt 1(0 1):127-35. PubMed ID: 23403181 [TBL] [Abstract][Full Text] [Related]
3. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications. Wang L; Ayaz H; Izzetoglu M J Biophotonics; 2019 Nov; 12(11):e201900175. PubMed ID: 31291506 [TBL] [Abstract][Full Text] [Related]
4. Short separation channel location impacts the performance of short channel regression in NIRS. Gagnon L; Cooper RJ; Yücel MA; Perdue KL; Greve DN; Boas DA Neuroimage; 2012 Feb; 59(3):2518-28. PubMed ID: 21945793 [TBL] [Abstract][Full Text] [Related]
5. Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS. Saager RB; Telleri NL; Berger AJ Neuroimage; 2011 Apr; 55(4):1679-85. PubMed ID: 21256223 [TBL] [Abstract][Full Text] [Related]
6. Interferometric diffuse correlation spectroscopy improves measurements at long source-detector separation and low photon count rate. Robinson M; Boas D; Sakadžic S; Franceschini MA; Carp S J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 33000571 [TBL] [Abstract][Full Text] [Related]
7. Performance improvement in a supercontinuum fiber-coupled system for near infrared absorption spectroscopy. Fuglerud SS; Noh JW; Aksnes A; Roar Hjelme D Appl Opt; 2022 Mar; 61(9):2371-2381. PubMed ID: 35333256 [TBL] [Abstract][Full Text] [Related]
8. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. Carp S; Tamborini D; Mazumder D; Wu KC; Robinson M; Stephens K; Shatrovoy O; Lue N; Ozana N; Blackwell M; Franceschini MA J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32996299 [TBL] [Abstract][Full Text] [Related]
9. Exploring the impact and influence of melanin on frequency-domain near-infrared spectroscopy measurements. Roy S; Wu J; Cao J; Disu J; Bharadwaj S; Meinert-Spyker E; Grover P; Kainerstorfer JM; Wood S J Biomed Opt; 2024 Jun; 29(Suppl 3):S33310. PubMed ID: 39323492 [TBL] [Abstract][Full Text] [Related]
10. Diffuse photon density wave measurements and Monte Carlo simulations. Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614 [TBL] [Abstract][Full Text] [Related]
11. Critical bounds on noise and SNR for robust estimation of real-time brain activity from functional near infra-red spectroscopy. Aqil M; Jeong MY Neuroimage; 2018 Aug; 176():321-353. PubMed ID: 29698730 [TBL] [Abstract][Full Text] [Related]
12. Influence of skin blood flow and source-detector distance on near-infrared spectroscopy-determined cerebral oxygenation in humans. Hirasawa A; Yanagisawa S; Tanaka N; Funane T; Kiguchi M; Sørensen H; Secher NH; Ogoh S Clin Physiol Funct Imaging; 2015 May; 35(3):237-44. PubMed ID: 24750947 [TBL] [Abstract][Full Text] [Related]
13. [Regional transcranial oximetry with near infrared spectroscopy (NIRS) in comparison with measuring oxygen saturation in the jugular bulb in infants and children for monitoring cerebral oxygenation]. Abdul-Khaliq H; Troitzsch D; Berger F; Lange PE Biomed Tech (Berl); 2000 Nov; 45(11):328-32. PubMed ID: 11155535 [TBL] [Abstract][Full Text] [Related]
14. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. Strangman GE; Zhang Q; Li Z Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy. Seong M; Phillips Z; Mai PM; Yeo C; Song C; Lee K; Kim JG J Biomed Opt; 2016 Feb; 21(2):27001. PubMed ID: 26886805 [TBL] [Abstract][Full Text] [Related]
17. Development of an implantable flexible probe for simultaneous near-infrared spectroscopy and electrocorticography. Yamakawa T; Inoue T; He Y; Fujii M; Suzuki M; Niwayama M IEEE Trans Biomed Eng; 2014 Feb; 61(2):388-95. PubMed ID: 23996535 [TBL] [Abstract][Full Text] [Related]
18. Wavelet minimum description length detrending for near-infrared spectroscopy. Jang KE; Tak S; Jung J; Jang J; Jeong Y; Ye JC J Biomed Opt; 2009; 14(3):034004. PubMed ID: 19566297 [TBL] [Abstract][Full Text] [Related]
19. Efficient data extraction method for near-infrared spectroscopy (NIRS) systems with high spatial and temporal resolution. Choi JK; Choi MG; Kim JM; Bae HM IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):169-77. PubMed ID: 23853299 [TBL] [Abstract][Full Text] [Related]
20. Development of a Monte Carlo-wave model to simulate time domain diffuse correlation spectroscopy measurements from first principles. Cheng X; Chen H; Sie EJ; Marsili F; Boas DA J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35199501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]