These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31668054)

  • 1. Extratympanic Observation of Middle and Inner Ear Structures in Rodents Using Optical Coherence Tomography.
    Oh SJ; Lee IW; Wang SG; Kong SK; Kim HK; Goh EK
    Clin Exp Otorhinolaryngol; 2020 May; 13(2):106-112. PubMed ID: 31668054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography.
    Mohebbi S; Mirsalehi M; Kahrs LA; Ortmaier T; Lenarz T; Majdani O
    Iran J Otorhinolaryngol; 2017 Jan; 29(90):5-9. PubMed ID: 28229056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging the Ear Anatomy and Function Using Optical Coherence Tomography Vibrometry.
    Dong W; Meenderink SWF
    Semin Hear; 2024 Feb; 45(1):101-109. PubMed ID: 38370517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study.
    Pitris C; Saunders KT; Fujimoto JG; Brezinski ME
    Arch Otolaryngol Head Neck Surg; 2001 Jun; 127(6):637-42. PubMed ID: 11405861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography: current and future clinical applications in otology.
    Matthews TJ; Adamson R
    Curr Opin Otolaryngol Head Neck Surg; 2020 Oct; 28(5):296-301. PubMed ID: 32833887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of middle ear structure and function with optical coherence tomography.
    Meenderink SWF; Warn M; Anchondo LM; Liu Y; Jung TTK; Dong W
    Acta Otolaryngol; 2023; 143(7):558-562. PubMed ID: 37366291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Intraoperative application of optical coherence-tomography (OCT) for visualization of the oval window niche].
    Just T; Lankenau E; Hüttmann G; Pau HW
    Laryngorhinootologie; 2009 Mar; 88(3):168-73. PubMed ID: 18759215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope.
    Cho NH; Jang JH; Jung W; Kim J
    Opt Express; 2014 Apr; 22(8):8985-95. PubMed ID: 24787787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the human tympanic membrane using optical coherence tomography in vivo.
    Djalilian HR; Ridgway J; Tam M; Sepehr A; Chen Z; Wong BJ
    Otol Neurotol; 2008 Dec; 29(8):1091-4. PubMed ID: 18957904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Coherence Tomography-Based Atlas of the Human Cochlear Hook Region.
    Kerkhofs L; Starovoyt A; Wouters J; Putzeys T; Verhaert N
    J Clin Med; 2022 Dec; 12(1):. PubMed ID: 36615042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography imaging of the inner ear: a feasibility study with implications for cochlear implantation.
    Lin J; Staecker H; Jafri MS
    Ann Otol Rhinol Laryngol; 2008 May; 117(5):341-6. PubMed ID: 18564530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammalian Cochlear Hair Cell Imaging Using Optical Coherence Tomography (OCT): A Preliminary Study.
    Choi SW; Kang J; Lee S; Oh SJ; Kim H; Kong SK
    J Int Adv Otol; 2021 Jan; 17(1):46-51. PubMed ID: 33605221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Optical coherence tomography in middle ear surgery].
    Just T; Lankenau E; Hüttmann G; Pau HW
    HNO; 2009 May; 57(5):421-7. PubMed ID: 19384537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 microm and 1.3 microm.
    Wong BJ; Zhao Y; Yamaguchi M; Nassif N; Chen Z; De Boer JF
    Otolaryngol Head Neck Surg; 2004 Mar; 130(3):334-8. PubMed ID: 15054375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo imaging of mouse cochlea by optical coherence tomography.
    Tona Y; Sakamoto T; Nakagawa T; Adachi T; Taniguchi M; Torii H; Hamaguchi K; Kitajiri S; Ito J
    Otol Neurotol; 2014 Feb; 35(2):e84-9. PubMed ID: 24448302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography of the rat cochlea.
    Wong BJ; de Boer JF; Park BH; Chen Z; Nelson JS
    J Biomed Opt; 2000 Oct; 5(4):367-70. PubMed ID: 11092423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology.
    Ko TH; Fujimoto JG; Schuman JS; Paunescu LA; Kowalevicz AM; Hartl I; Drexler W; Wollstein G; Ishikawa H; Duker JS
    Ophthalmology; 2005 Nov; 112(11):1922.e1-15. PubMed ID: 16183127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the internal structure of normal and pathological Guinea pig cochleae using optical coherence tomography.
    Kakigi A; Takubo Y; Egami N; Kashio A; Ushio M; Sakamoto T; Yamashita S; Yamasoba T
    Audiol Neurootol; 2013; 18(5):335-43. PubMed ID: 24107357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Imaging of Cochlear Structures by Optical Coherence Tomography (OCT). Temporal bone experiments for an OCT-guided cochleostomy technique].
    Pau HW; Lankenau E; Just T; Hüttmann G
    Laryngorhinootologie; 2008 Sep; 87(9):641-6. PubMed ID: 18421645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
    Tan HEI; Santa Maria PL; Wijesinghe P; Francis Kennedy B; Allardyce BJ; Eikelboom RH; Atlas MD; Dilley RJ
    Otolaryngol Head Neck Surg; 2018 Sep; 159(3):424-438. PubMed ID: 29787354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.