BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31668068)

  • 1. Donor-Acceptor-Type Conjugated Polymer-Based Multicolored Drug Carriers with Tunable Aggregation-Induced Emission Behavior for Self-Illuminating Cancer Therapy.
    Wang Z; Wang C; Gan Q; Cao Y; Yuan H; Hua D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):41853-41861. PubMed ID: 31668068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Donor-Acceptor Conjugated Polymer Dots for Tunable Electrochemiluminescence Activated by Aggregation-Induced Emission-Active Moieties.
    Wang Z; Feng Y; Wang N; Cheng Y; Quan Y; Ju H
    J Phys Chem Lett; 2018 Sep; 9(18):5296-5302. PubMed ID: 30157647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress in Polymeric AIE-Active Drug Delivery Systems: Design and Application.
    Pei Y; Wang Z; Wang C
    Mol Pharm; 2021 Nov; 18(11):3951-3965. PubMed ID: 34585933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatostatin receptor-mediated specific delivery of paclitaxel prodrugs for efficient cancer therapy.
    Huo M; Zhu Q; Wu Q; Yin T; Wang L; Yin L; Zhou J
    J Pharm Sci; 2015 Jun; 104(6):2018-2028. PubMed ID: 25820241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplified electrochemiluminescence signals promoted by the AIE-active moiety of D-A type polymer dots for biosensing.
    Wang Z; Wang N; Gao H; Quan Y; Ju H; Cheng Y
    Analyst; 2019 Dec; 145(1):233-239. PubMed ID: 31746824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging intracellular anticancer drug delivery by self-assembly micelles with aggregation-induced emission (AIE micelles).
    Zhang C; Jin S; Li S; Xue X; Liu J; Huang Y; Jiang Y; Chen WQ; Zou G; Liang XJ
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5212-20. PubMed ID: 24606837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery.
    Chen D; Yu H; Sun K; Liu W; Wang H
    Drug Deliv; 2014 Jun; 21(4):258-64. PubMed ID: 24102086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved safety and efficacy of a lipid emulsion loaded with a paclitaxel-cholesterol complex for the treatment of breast tumors.
    Ye J; Liu Y; Xia X; Meng L; Dong W; Wang R; Fu Z; Liu H; Han R
    Oncol Rep; 2016 Jul; 36(1):399-409. PubMed ID: 27175803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optimized two-vial formulation lipid nanoemulsion of paclitaxel for targeted delivery to tumor.
    Chen L; Chen B; Deng L; Gao B; Zhang Y; Wu C; Yu N; Zhou Q; Yao J; Chen J
    Int J Pharm; 2017 Dec; 534(1-2):308-315. PubMed ID: 28986321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles.
    Seow WY; Xue JM; Yang YY
    Biomaterials; 2007 Mar; 28(9):1730-40. PubMed ID: 17182095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the Emission of a Nonconventional Aggregation-Induced Emission Polymer via Silicon-Bridged Twisted Intramolecular Charge Transfer for Targeted Delivery and Visualized Drug Release.
    Zhao Y; He M; Xu L; Zhang C; Guo L; Feng W; Yan H
    Biomacromolecules; 2023 Apr; 24(4):1888-1900. PubMed ID: 36988226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature.
    Yu DH; Lu Q; Xie J; Fang C; Chen HZ
    Biomaterials; 2010 Mar; 31(8):2278-92. PubMed ID: 20053444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An implantable depot capable of in situ generation of micelles to achieve controlled and targeted tumor chemotherapy.
    Luo X; Chen M; Chen Z; Xie S; He N; Wang T; Li X
    Acta Biomater; 2018 Feb; 67():122-133. PubMed ID: 29242159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHB-Based Gels as Delivery Agents of Chemotherapeutics for the Effective Shrinkage of Tumors.
    Wu YL; Wang H; Qiu YK; Liow SS; Li Z; Loh XJ
    Adv Healthc Mater; 2016 Oct; 5(20):2679-2685. PubMed ID: 27594657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Well-Defined Redox-Sensitive Polyethene Glycol-Paclitaxel Prodrug Conjugate for Tumor-Specific Delivery of Paclitaxel Using Octreotide for Tumor Targeting.
    Yin T; Wu Q; Wang L; Yin L; Zhou J; Huo M
    Mol Pharm; 2015 Aug; 12(8):3020-31. PubMed ID: 26086430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An oroxylin A-loaded aggregation-induced emission active polymeric system greatly increased the antitumor efficacy against squamous cell carcinoma.
    Zhu Y; Guo Y; Liu M; Wei L; Wang X
    J Mater Chem B; 2020 Mar; 8(10):2040-2047. PubMed ID: 32100790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy.
    Wang G; Wang Z; Li C; Duan G; Wang K; Li Q; Tao T
    Biomed Pharmacother; 2018 Oct; 106():275-284. PubMed ID: 29966971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New electron-donor/acceptor-substituted tetraphenylethylenes: aggregation-induced emission with tunable emission color and optical-waveguide behavior.
    Gu X; Yao J; Zhang G; Zhang C; Yan Y; Zhao Y; Zhang D
    Chem Asian J; 2013 Oct; 8(10):2362-9. PubMed ID: 23744831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy.
    Xiang J; Wu B; Zhou Z; Hu S; Piao Y; Zhou Q; Wang G; Tang J; Liu X; Shen Y
    Sci China Life Sci; 2018 Apr; 61(4):436-447. PubMed ID: 29572777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced antitumor efficacy by d-glucosamine-functionalized and paclitaxel-loaded poly(ethylene glycol)-co-poly(trimethylene carbonate) polymer nanoparticles.
    Jiang X; Xin H; Gu J; Du F; Feng C; Xie Y; Fang X
    J Pharm Sci; 2014 May; 103(5):1487-96. PubMed ID: 24619482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.