BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31668229)

  • 1. Synthetic probe development for measuring single or few-cell activity and efflux.
    Lui A; Wang J; Chio L; Landry MP
    Methods Enzymol; 2019; 628():19-41. PubMed ID: 31668229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays.
    Landry MP; Ando H; Chen AY; Cao J; Kottadiel VI; Chio L; Yang D; Dong J; Lu TK; Strano MS
    Nat Nanotechnol; 2017 May; 12(4):368-377. PubMed ID: 28114298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes.
    Cha TG; Baker BA; Sauffer MD; Salgado J; Jaroch D; Rickus JL; Porterfield DM; Choi JH
    ACS Nano; 2011 May; 5(5):4236-44. PubMed ID: 21520951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding Paper-Based Aptasensor Platform Coated with Novel Nanoassemblies for Instant and Highly Sensitive Detection of 17β-Estradiol.
    Ming T; Wang Y; Luo J; Liu J; Sun S; Xing Y; Xiao G; Jin H; Cai X
    ACS Sens; 2019 Dec; 4(12):3186-3194. PubMed ID: 31775503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review: Aptamers in microfluidic chips.
    Xu Y; Yang X; Wang E
    Anal Chim Acta; 2010 Dec; 683(1):12-20. PubMed ID: 21094377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes.
    Pejcic B; Myers M; Ranwala N; Boyd L; Baker M; Ross A
    Talanta; 2011 Sep; 85(3):1648-57. PubMed ID: 21807235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species.
    Lee J; Jo M; Kim TH; Ahn JY; Lee DK; Kim S; Hong S
    Lab Chip; 2011 Jan; 11(1):52-6. PubMed ID: 20967396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection.
    Yang L; Wang J; Lü H; Hui N
    Mikrochim Acta; 2021 Jan; 188(1):25. PubMed ID: 33404773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Technological Perspectives in Developing Carbon Nanotube-based DNA-modified Biosensors].
    Komarov IA; Bobrinetskiy II; Golovin AV; Zalevsky AO; Aydarkhanov RD
    Biofizika; 2015; 60(5):877-82. PubMed ID: 26591597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEI/Zr⁴⁺-coated nanopore for selective and sensitive detection of ATP in combination with single-walled carbon nanotubes.
    Zhang S; Bao A; Sun T; Wang E; Wang J
    Biosens Bioelectron; 2015 Jan; 63():287-293. PubMed ID: 25108109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aptamer-based microfluidic beads array sensor for simultaneous detection of multiple analytes employing multienzyme-linked nanoparticle amplification and quantum dots labels.
    Zhang H; Hu X; Fu X
    Biosens Bioelectron; 2014 Jul; 57():22-9. PubMed ID: 24534576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors.
    He P; Oncescu V; Lee S; Choi I; Erickson D
    Anal Chim Acta; 2013 Jan; 759():74-80. PubMed ID: 23260679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive Label-Free Sensing of IL-6 Based on PASE Functionalized Carbon Nanotube Micro-Arrays with RNA-Aptamers as Molecular Recognition Elements.
    Khosravi F; Loeian SM; Panchapakesan B
    Biosensors (Basel); 2017 Apr; 7(2):. PubMed ID: 28420169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Carbon Nanotube Optical Sensor Reports Nuclear Entry via a Noncanonical Pathway.
    Budhathoki-Uprety J; Langenbacher RE; Jena PV; Roxbury D; Heller DA
    ACS Nano; 2017 Apr; 11(4):3875-3882. PubMed ID: 28398031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor.
    Vlandas A; Kurkina T; Ahmad A; Kern K; Balasubramanian K
    Anal Chem; 2010 Jul; 82(14):6090-7. PubMed ID: 20552987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic systems biology approach for live single-cell mitochondrial ROS imaging.
    Kniss A; Lu H; Jones DP; Kemp ML
    Methods Enzymol; 2013; 526():219-30. PubMed ID: 23791103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay.
    Zhang L; Wei H; Li J; Li T; Li D; Li Y; Wang E
    Biosens Bioelectron; 2010 Apr; 25(8):1897-901. PubMed ID: 20106653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions.
    Yang R; Tang Z; Yan J; Kang H; Kim Y; Zhu Z; Tan W
    Anal Chem; 2008 Oct; 80(19):7408-13. PubMed ID: 18771233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: picomolar level detection of adenosine triphosphate.
    Das BK; Tlili C; Badhulika S; Cella LN; Chen W; Mulchandani A
    Chem Commun (Camb); 2011 Apr; 47(13):3793-5. PubMed ID: 21286623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.