These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31668699)

  • 1. Novel hybrid method for interpolating missing information in body surface potential maps.
    Rababah Msc AS; Bond RR; Msc KR; Guldenring D; McLaughlin J; Finlay DD
    J Electrocardiol; 2019; 57S():S51-S55. PubMed ID: 31668699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpolation of body surface potential maps.
    Schijvenaars BJ; Kors JA; van Herpen G; Kornreich F; van Bemmel JH
    J Electrocardiol; 1995; 28 Suppl():104-9. PubMed ID: 8656096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of the standard 12-lead ECG to simulate electrode displacements.
    Schijvenaars RJ; Kors JA; van Herpen G; van Bemmel JH
    J Electrocardiol; 1996; 29 Suppl():5-9. PubMed ID: 9238370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of electrode placement errors in the EASI-derived 12-lead electrocardiogram.
    Finlay DD; Nugent CD; Nelwan SP; Bond RR; Donnelly MP; Guldenring D
    J Electrocardiol; 2010; 43(6):606-11. PubMed ID: 20832814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Interpolation on the Inverse Problem of Electrocardiography.
    Dogrusoz YS; Bear LR; Bergquist J; Dubois R; Good W; MacLeod RS; Rababah A; Stoks J
    Comput Cardiol (2010); 2019; 46():. PubMed ID: 32123686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How many electrodes and where? A "poldermodel" for electrocardiography.
    Kors JA; van Herpen G
    J Electrocardiol; 2002; 35 Suppl():7-12. PubMed ID: 12539094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of interpolating low amplitude leads on the inverse reconstruction of cardiac electrical activity.
    Rababah AS; Bear LR; Dogrusoz YS; Good W; Bergquist J; Stoks J; MacLeod R; Rjoob K; Jennings M; Mclaughlin J; Finlay DD
    Comput Biol Med; 2021 Sep; 136():104666. PubMed ID: 34315032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epicardial potentials computed from the body surface potential map using inverse electrocardiography and an individualised torso model improve sensitivity for acute myocardial infarction diagnosis.
    Daly MJ; Finlay DD; Guldenring D; Bond RR; McCann AJ; Scott PJ; Adgey JA; Harbinson MT
    Eur Heart J Acute Cardiovasc Care; 2017 Dec; 6(8):728-735. PubMed ID: 27669728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body surface Laplacian mapping of cardiac excitation in intact pigs.
    He B; Kirby DA; Mullen TJ; Cohen RJ
    Pacing Clin Electrophysiol; 1993 May; 16(5 Pt 1):1017-26. PubMed ID: 7685881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posterior body surface potential mapping using capacitive-coupled electrodes and its application.
    Cho Y; Lee S; Choi EK; Park HE; Park KS; Oh S
    J Korean Med Sci; 2012 Dec; 27(12):1517-23. PubMed ID: 23255851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body surface Laplacian mapping of atrial depolarization in healthy human subjects.
    Lian J; Li G; Cheng J; Avitall B; He B
    Med Biol Eng Comput; 2002 Nov; 40(6):650-9. PubMed ID: 12507316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body surface potential mapping of ST segment changes in acute myocardial infarction. Implications for ECG enrollment criteria for thrombolytic therapy.
    Kornreich F; Montague TJ; Rautaharju PM
    Circulation; 1993 Mar; 87(3):773-82. PubMed ID: 8443898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of epicardial potential maps derived from the 12-lead electrocardiograms with scintigraphic images during controlled myocardial ischemia.
    Horáček BM; Sapp JL; Penney CJ; Warren JW; Wang JJ
    J Electrocardiol; 2011; 44(6):707-12. PubMed ID: 22018485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid 12-lead automated localization method: Comparison to electrocardiographic imaging (ECGI) in patient-specific geometry.
    Zhou S; Horáček BM; Warren JW; AbdelWahab A; Sapp JL
    J Electrocardiol; 2018; 51(6S):S92-S97. PubMed ID: 30177365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A field-compatible method for interpolating biopotentials.
    Burnes JE; Kaelber DC; Taccardi B; Lux RL; Ershler PR; Rudy Y
    Ann Biomed Eng; 1998; 26(1):37-47. PubMed ID: 10355549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Map representation and diagnostic performance of the standard 12-lead ECG.
    Kornreich F; Lux RL; MacLeod RS
    J Electrocardiol; 1995; 28 Suppl():121-3. PubMed ID: 8656098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XML-BSPM: an XML format for storing Body Surface Potential Map recordings.
    Bond RR; Finlay DD; Nugent CD; Moore G
    BMC Med Inform Decis Mak; 2010 May; 10():28. PubMed ID: 20470392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supplemented standard 12-lead electrocardiogram for optimal diagnosis and reconstruction of significant body surface map patterns.
    Kornreich F; MacLeod RS; Lux RL
    J Electrocardiol; 2008; 41(3):251-6. PubMed ID: 18433616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body surface Laplacian mapping in patients with left or right ventricular bundle branch block.
    Umetani K; Okamoto Y; Mashima S; Ono K; Hosaka H; He B
    Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 1):2043-54. PubMed ID: 9826855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of quadratic versus linear interpolation in noninvasive Electrocardiographic Imaging (ECGI).
    Ghosh S; Rudy Y
    Ann Biomed Eng; 2005 Sep; 33(9):1187-201. PubMed ID: 16133926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.