These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31668717)

  • 21. Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load.
    Mokhtarinia HR; Sanjari MA; Chehrehrazi M; Kahrizi S; Parnianpour M
    Hum Mov Sci; 2016 Feb; 45():182-92. PubMed ID: 26684726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of an Inertial Sensor System for Physical Therapists to Quantify Movement Coordination During Functional Tasks.
    Tulipani L; Boocock MG; Lomond KV; El-Gohary M; Reid DA; Henry SM
    J Appl Biomech; 2018 Feb; 34(1):23-30. PubMed ID: 28787248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements.
    Howarth SJ; Graham RB
    J Biomech; 2015 Apr; 48(6):1219-23. PubMed ID: 25680296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional primary and coupled range of motions and movement coordination of the pelvis, lumbar and thoracic spine in standing posture using inertial tracking device.
    Narimani M; Arjmand N
    J Biomech; 2018 Mar; 69():169-174. PubMed ID: 29395226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing the local dynamic stability of trunk movements between varsity athletes with and without non-specific low back pain.
    Graham RB; Oikawa LY; Ross GB
    J Biomech; 2014 Apr; 47(6):1459-64. PubMed ID: 24524991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of methods to quantify control of the spine.
    Bourdon E; Graham RB; van Diëen J
    J Biomech; 2019 Nov; 96():109344. PubMed ID: 31561910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Subject-Specific Approach to Detect Fatigue-Related Changes in Spine Motion Using Wearable Sensors.
    Chan VCH; Beaudette SM; Smale KB; Beange KHE; Graham RB
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32384664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable sensor validation of sports-related movements for the lower extremity and trunk.
    Dahl KD; Dunford KM; Wilson SA; Turnbull TL; Tashman S
    Med Eng Phys; 2020 Oct; 84():144-150. PubMed ID: 32977911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of scapular kinematics from optical motion capture and inertial measurement units during a work-related and functional task protocol.
    Friesen KB; Sigurdson A; Lang AE
    Med Biol Eng Comput; 2023 Jun; 61(6):1521-1531. PubMed ID: 36781544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An instrumented glove for monitoring hand function.
    Mohan A; Tharion G; Kumar RK; Devasahayam SR
    Rev Sci Instrum; 2018 Oct; 89(10):105001. PubMed ID: 30399736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Oct; 56(5):361-369. PubMed ID: 28612890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of deadlift biomechanics with wearable inertial measurement units.
    O'Reilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield BM
    J Biomech; 2017 Jun; 58():155-161. PubMed ID: 28545824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trunk Dynamic Stability Assessment for Individuals With and Without Nonspecific Low Back Pain During Repetitive Movement.
    Asgari M; Mokhtarinia HR; Sanjari MA; Kahrizi S; Philip GC; Parnianpour M; Khalaf K
    Hum Factors; 2022 Mar; 64(2):291-304. PubMed ID: 32721245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units.
    Cesareo A; Biffi E; Cuesta-Frau D; D'Angelo MG; Aliverti A
    Med Biol Eng Comput; 2020 Apr; 58(4):785-804. PubMed ID: 32002753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Can We Accurately Measure Axial Segment Coordination during Turning Using Inertial Measurement Units (IMUs)?
    Khobkhun F; Hollands MA; Richards J; Ajjimaporn A
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pain catastrophizing moderates changes in spinal control in response to noxiously induced low back pain.
    Ross GB; Sheahan PJ; Mahoney B; Gurd BJ; Hodges PW; Graham RB
    J Biomech; 2017 Jun; 58():64-70. PubMed ID: 28460690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield BM
    J Strength Cond Res; 2017 Aug; 31(8):2303-2312. PubMed ID: 28731981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel 3-dimensional motion analysis method for measuring the lumbar spine range of motion: repeatability and reliability compared with an electrogoniometer.
    Tojima M; Ogata N; Yozu A; Sumitani M; Haga N
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1327-33. PubMed ID: 23797505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine.
    Takayanagi K; Takahashi K; Yamagata M; Moriya H; Kitahara H; Tamaki T
    Spine (Phila Pa 1976); 2001 Sep; 26(17):1858-65. PubMed ID: 11568694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.