These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31668906)

  • 1. Correlations of pelvis state to foot placement do not imply within-step active control.
    Patil NS; Dingwell JB; Cusumano JP
    J Biomech; 2019 Dec; 97():109375. PubMed ID: 31668906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking.
    Wang Y; Srinivasan M
    Biol Lett; 2014 Sep; 10(9):. PubMed ID: 25252834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced center of pressure modulation elicits foot placement adjustments, but no additional trunk motion during anteroposterior-perturbed walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Biomech; 2018 Feb; 68():93-98. PubMed ID: 29317105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force.
    Hayot C; Sakka S; Lacouture P
    Hum Mov Sci; 2013 Apr; 32(2):279-89. PubMed ID: 23725827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmented Hip Proprioception Influences Mediolateral Foot Placement During Walking.
    Knapp HA; Sobolewski BA; Dean JC
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2017-2026. PubMed ID: 34550889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of vestibular stimulation on gait stability when walking at different step widths.
    Magnani RM; van Dieën JH; Bruijn SM
    Exp Brain Res; 2023 Jan; 241(1):49-58. PubMed ID: 36346447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-Stroke Adaptation of Lateral Foot Placement Coordination in Variable Environments.
    Dragunas AC; Cornwell T; Lopez-Rosado R; Gordon KE
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():731-739. PubMed ID: 33835919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of foot placement during gait.
    Redfern MS; Schumann T
    J Biomech; 1994 Nov; 27(11):1339-46. PubMed ID: 7798284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematics of lower limbs during walking are emulated by springy walking model with a compliantly connected, off-centered curvy foot.
    Lim H; Park S
    J Biomech; 2018 Apr; 71():119-126. PubMed ID: 29456169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does ankle push-off correct for errors in anterior-posterior foot placement relative to center-of-mass states?
    Jin J; van Dieën JH; Kistemaker D; Daffertshofer A; Bruijn SM
    PeerJ; 2023; 11():e15375. PubMed ID: 37273538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of narrow base gait on mediolateral balance control in young and older adults.
    Arvin M; Mazaheri M; Hoozemans MJM; Pijnappels M; Burger BJ; Verschueren SMP; van Dieën JH
    J Biomech; 2016 May; 49(7):1264-1267. PubMed ID: 27018156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active control of lateral balance in human walking.
    Bauby CE; Kuo AD
    J Biomech; 2000 Nov; 33(11):1433-40. PubMed ID: 10940402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of the major determinants of human gait.
    Lin YC; Gfoehler M; Pandy MG
    J Biomech; 2014 Apr; 47(6):1324-31. PubMed ID: 24582352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foot placement control and gait instability among people with stroke.
    Dean JC; Kautz SA
    J Rehabil Res Dev; 2015; 52(5):577-90. PubMed ID: 26437301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humans use multi-objective control to regulate lateral foot placement when walking.
    Dingwell JB; Cusumano JP
    PLoS Comput Biol; 2019 Mar; 15(3):e1006850. PubMed ID: 30840620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional tracking task to assess frontal plane motor control in post stroke gait.
    Reissman ME; Dhaher YY
    J Biomech; 2015 Jul; 48(10):1782-8. PubMed ID: 26037229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.