BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31669120)

  • 1. Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody.
    Oyama H; Koga H; Tadokoro T; Maenaka K; Shiota A; Yokoyama M; Noda M; Torisu T; Uchiyama S
    J Pharm Sci; 2020 Jan; 109(1):308-315. PubMed ID: 31669120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.
    Zheng S; Qiu D; Adams M; Li J; Mantri RV; Gandhi R
    AAPS PharmSciTech; 2017 Jan; 18(1):42-48. PubMed ID: 26340951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetate- and Citrate-Specific Ion Effects on Unfolding and Temperature-Dependent Aggregation Rates of Anti-Streptavidin IgG1.
    Barnett GV; Razinkov VI; Kerwin BA; Hillsley A; Roberts CJ
    J Pharm Sci; 2016 Mar; 105(3):1066-73. PubMed ID: 26886346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Increased Aggregation Propensity of a Light-Exposed IgG1 Monoclonal Antibody Using Hydrogen Exchange Mass Spectrometry, Biophysical Characterization, and Structural Analysis.
    Bommana R; Chai Q; Schöneich C; Weiss WF; Majumdar R
    J Pharm Sci; 2018 Jun; 107(6):1498-1511. PubMed ID: 29408480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration.
    Zidar M; Šušterič A; Ravnik M; Kuzman D
    Pharm Res; 2017 Sep; 34(9):1831-1839. PubMed ID: 28593474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of biophysical characterization techniques in predicting monoclonal antibody stability.
    Thiagarajan G; Semple A; James JK; Cheung JK; Shameem M
    MAbs; 2016; 8(6):1088-97. PubMed ID: 27210456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Protein Conformation, Apparent Solubility, and Protein-Protein Interactions on the Rates and Mechanisms of Aggregation for an IgG1Monoclonal Antibody.
    Kalonia C; Toprani V; Toth R; Wahome N; Gabel I; Middaugh CR; Volkin DB
    J Phys Chem B; 2016 Jul; 120(29):7062-75. PubMed ID: 27380437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates.
    Brummitt RK; Nesta DP; Chang L; Chase SF; Laue TM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2087-103. PubMed ID: 21213308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic Unfolding and Aggregation Fingerprints of Monoclonal Antibodies Using Thermal Profiling.
    Melien R; Garidel P; Hinderberger D; Blech M
    Pharm Res; 2020 Apr; 37(4):78. PubMed ID: 32236701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating the Effects of Antimicrobial Preservatives on Conformational Stability, Aggregation Propensity, and Backbone Flexibility of an IgG1 mAb.
    Arora J; Joshi SB; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2017 Jun; 106(6):1508-1518. PubMed ID: 28212986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions.
    Bhambhani A; Kissmann JM; Joshi SB; Volkin DB; Kashi RS; Middaugh CR
    J Pharm Sci; 2012 Mar; 101(3):1120-35. PubMed ID: 22147527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of arginine glutamate on the stability of monoclonal antibodies in solution.
    Kheddo P; Tracka M; Armer J; Dearman RJ; Uddin S; van der Walle CF; Golovanov AP
    Int J Pharm; 2014 Oct; 473(1-2):126-33. PubMed ID: 24992318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody.
    Majumdar R; Manikwar P; Hickey JM; Samra HS; Sathish HA; Bishop SM; Middaugh CR; Volkin DB; Weis DD
    Biochemistry; 2013 May; 52(19):3376-89. PubMed ID: 23594236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions.
    Yageta S; Lauer TM; Trout BL; Honda S
    Mol Pharm; 2015 May; 12(5):1443-55. PubMed ID: 25871775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: effects of resin type, load buffer, and protein stability.
    Guo J; Carta G
    J Chromatogr A; 2015 Apr; 1388():184-94. PubMed ID: 25739785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies.
    Brader ML; Estey T; Bai S; Alston RW; Lucas KK; Lantz S; Landsman P; Maloney KM
    Mol Pharm; 2015 Apr; 12(4):1005-17. PubMed ID: 25687223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.