These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31669254)

  • 1. Damage tolerance of lamellar bone.
    Razi H; Predan J; Fischer FD; Kolednik O; Fratzl P
    Bone; 2020 Jan; 130():115102. PubMed ID: 31669254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crack driving force in twisted plywood structures.
    Fischer FD; Kolednik O; Predan J; Razi H; Fratzl P
    Acta Biomater; 2017 Jun; 55():349-359. PubMed ID: 28396291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone.
    Demirtas A; Taylor EA; Gludovatz B; Ritchie RO; Donnelly E; Ural A
    J Mech Behav Biomed Mater; 2023 Sep; 145():106034. PubMed ID: 37494816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture toughness of the stomatopod dactyl club is enhanced by plastic dissipation: A fracture micromechanics study.
    Chua JQI; Srinivasan DV; Idapalapati S; Miserez A
    Acta Biomater; 2021 May; 126():339-349. PubMed ID: 33727196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage analysis of human cortical bone under compressive and tensile loadings.
    Maghami E; Moore JP; Josephson TO; Najafi AR
    Comput Methods Biomech Biomed Engin; 2022 Feb; 25(3):342-357. PubMed ID: 35014938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtensile properties and failure mechanisms of cortical bone at the lamellar level.
    Casari D; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Jan; 120():135-145. PubMed ID: 32428682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components.
    Allahyari P; Silani M; Yaghoubi V; Milovanovic P; Schmidt FN; Busse B; Qwamizadeh M
    J Mech Behav Biomed Mater; 2023 Jan; 137():105530. PubMed ID: 36334581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of miniature single- and double-notch bending specimens for estimating the fracture toughness of cortical bone.
    McCormack J; Wang XS; Stover SM; Gibeling JC; Fyhrie DP
    J Biomed Mater Res A; 2012 Apr; 100(4):1080-8. PubMed ID: 22323431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the effect of reduced compositional heterogeneity on fracture resistance of human cortical bone using finite element modeling.
    Demirtas A; Curran E; Ural A
    Bone; 2016 Oct; 91():92-101. PubMed ID: 27451083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration.
    Casari D; Kochetkova T; Michler J; Zysset P; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():391-402. PubMed ID: 34175475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture modes and hybrid toughening mechanisms in oscillated/twisted plywood structure.
    Song Z; Ni Y; Cai S
    Acta Biomater; 2019 Jun; 91():284-293. PubMed ID: 31028909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of microstructure on crack propagation in cortical bone at the mesoscale.
    Gustafsson A; Wallin M; Isaksson H
    J Biomech; 2020 Nov; 112():110020. PubMed ID: 32980752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodology for the investigation of toughness and crack propagation in mouse bone.
    Carriero A; Zimmermann EA; Shefelbine SJ; Ritchie RO
    J Mech Behav Biomed Mater; 2014 Nov; 39():38-47. PubMed ID: 25084121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of non-enzymatic glycation on the mechanical properties of cortical bone.
    Jia S; Gong H; Cen H; Shi P; Zhang R; Li Z; Bi X
    J Mech Behav Biomed Mater; 2021 Jul; 119():104553. PubMed ID: 33930651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material heterogeneity, microstructure, and microcracks demonstrate differential influence on crack initiation and propagation in cortical bone.
    Demirtas A; Ural A
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1415-1428. PubMed ID: 29808355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.