BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 31669355)

  • 21. Enhancing production of alkaline polygalacturonate lyase from Bacillus subtilis by fed-batch fermentation.
    Zou M; Guo F; Li X; Zhao J; Qu Y
    PLoS One; 2014; 9(3):e90392. PubMed ID: 24603713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering the biological conversion of formate into crotonate in Cupriavidus necator.
    Collas F; Dronsella BB; Kubis A; Schann K; Binder S; Arto N; Claassens NJ; Kensy F; Orsi E
    Metab Eng; 2023 Sep; 79():49-65. PubMed ID: 37414134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies in fed-batch cultivation on the production performance of
    Ming LC; Halim M; Rahim RA; Wan HY; Ariff AB
    Food Sci Biotechnol; 2016; 25(5):1393-1398. PubMed ID: 30263421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.
    Othman M; Ariff AB; Wasoh H; Kapri MR; Halim M
    AMB Express; 2017 Nov; 7(1):215. PubMed ID: 29181600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A machine learning-based approach for improving plasmid DNA production in Escherichia coli fed-batch fermentations.
    Xu Z; Zhu X; Mohsin A; Guo J; Zhuang Y; Chu J; Guo M; Wang G
    Biotechnol J; 2024 Jun; 19(6):e2400140. PubMed ID: 38896410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feeding Strategies of Two-Stage Fed-Batch Cultivation Processes for Microbial Lipid Production from Sugarcane Top Hydrolysate and Crude Glycerol by the Oleaginous Red Yeast
    Poontawee R; Limtong S
    Microorganisms; 2020 Jan; 8(2):. PubMed ID: 31979035
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Leandro T; Teles M; Gomes-Dias JS; Marques M; Rocha CMR; da Fonseca MMR; Cesário MT
    Mar Drugs; 2023 Oct; 21(10):. PubMed ID: 37888472
    [No Abstract]   [Full Text] [Related]  

  • 28.
    Moriya H; Takita Y; Matsumoto A; Yamahata Y; Nishimukai M; Miyazaki M; Shimoi H; Kawai SJ; Yamada M
    Front Bioeng Biotechnol; 2020; 8():974. PubMed ID: 32984275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(3-hydroxybutyrate) production using supplemented corn-processing byproducts through Cupriavidus necator via solid-state fermentation: Cultivation on flask and bioreactor scale.
    Jafari MS; Hejazi P
    J Biotechnol; 2024 Jun; 392():1-10. PubMed ID: 38897291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of glucose on the fatty acid composition of Cupriavidus necator JMP134 during 2,4-dichlorophenoxyacetic acid degradation: implications for lipid-based stable isotope probing methods.
    Lerch TZ; Dignac MF; Barriuso E; Mariotti A
    Appl Environ Microbiol; 2011 Oct; 77(20):7296-306. PubMed ID: 21856833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of chemically defined media for
    Zhang X; Liu X; Zhang N; Zhao X; Li Y; Gong D; Yun Y
    3 Biotech; 2023 Nov; 13(11):375. PubMed ID: 37873496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of poly‑γ‑L‑diaminobutanoic acid production in Bacillus pumilus by repeated pH shocks.
    Li S; Wang N; Li X
    Bioprocess Biosyst Eng; 2024 Jun; ():. PubMed ID: 38904716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrated strategy of temperature shift and mannitol feeding for enhanced production of echinocandin B by
    Zou SP; Xiong Y; Niu K; Hu ZC; Zheng YG
    3 Biotech; 2019 Apr; 9(4):140. PubMed ID: 30944787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Physics to Bioengineering: Microbial Cultivation Process Design and Feeding Rate Control Based on Relative Entropy Using Nuisance Time.
    Urniezius R; Galvanauskas V; Survyla A; Simutis R; Levisauskas D
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and stoichiometric parameters in the fed-batch bioreactor production of poly(3-hydroxybutyrate) by Bacillus megaterium using different carbon sources.
    De Melo RN; de Souza Hassemer do G; Nascimento LH; Colet R; Steffens C; Junges A; Valduga E
    Bioprocess Biosyst Eng; 2023 Dec; 46(12):1791-1799. PubMed ID: 37882827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent updates to microbial production and recovery of polyhydroxyalkanoates.
    de Melo RN; de Souza Hassemer G; Steffens J; Junges A; Valduga E
    3 Biotech; 2023 Jun; 13(6):204. PubMed ID: 37223002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Minimizing the Lag Phase of Cupriavidus necator Growth under Autotrophic, Heterotrophic, and Mixotrophic Conditions.
    Amer A; Kim Y
    Appl Environ Microbiol; 2023 Feb; 89(2):e0200722. PubMed ID: 36719244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation.
    Biglari N; Orita I; Fukui T; Sudesh K
    J Biotechnol; 2020 Jan; 307():77-86. PubMed ID: 31669355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repeated batch cultivation of Ralstonia eutropha for Poly (beta-hydroxybutyrate) production.
    Khanna S; Srivastava AK
    Biotechnol Lett; 2005 Sep; 27(18):1401-3. PubMed ID: 16215857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.