These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 31669469)
1. Combined cross-linked enzyme aggregates of glycerol dehydrogenase and NADH oxidase for high efficiency in situ NAD Xu MQ; Li FL; Yu WQ; Li RF; Zhang YW Int J Biol Macromol; 2020 Feb; 144():1013-1021. PubMed ID: 31669469 [TBL] [Abstract][Full Text] [Related]
2. Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for L-tagatose synthesis via in situ cofactor regeneration. Li XY; Xu MQ; Liu H; Zhou Q; Gao J; Zhang YW Bioprocess Biosyst Eng; 2022 Feb; 45(2):353-364. PubMed ID: 34797400 [TBL] [Abstract][Full Text] [Related]
3. Conversion of glycerol to 1,3-dihydroxyacetone by glycerol dehydrogenase co-expressed with an NADH oxidase for cofactor regeneration. Zhang J; Cui Z; Chang H; Fan X; Zhao Q; Wei W Biotechnol Lett; 2016 Sep; 38(9):1559-64. PubMed ID: 27233513 [TBL] [Abstract][Full Text] [Related]
4. Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration. Wang L; Zhang H; Ching CB; Chen Y; Jiang R Appl Microbiol Biotechnol; 2012 Jun; 94(5):1233-41. PubMed ID: 22116631 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Zhang Y; Gao F; Zhang SP; Su ZG; Ma GH; Wang P Bioresour Technol; 2011 Jan; 102(2):1837-43. PubMed ID: 20947342 [TBL] [Abstract][Full Text] [Related]
6. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration. Fang B; Jiang W; Zhou Q; Wang S PLoS One; 2015; 10(6):e0128412. PubMed ID: 26115038 [TBL] [Abstract][Full Text] [Related]
7. Magnetic combined cross-linked enzyme aggregates (Combi-CLEAs) for cofactor regeneration in the synthesis of chiral alcohol. Su E; Meng Y; Ning C; Ma X; Deng S J Biotechnol; 2018 Apr; 271():1-7. PubMed ID: 29452130 [TBL] [Abstract][Full Text] [Related]
8. Characterization of Thermotoga maritima glycerol dehydrogenase for the enzymatic production of dihydroxyacetone. Beauchamp J; Gross PG; Vieille C Appl Microbiol Biotechnol; 2014 Aug; 98(16):7039-50. PubMed ID: 24664447 [TBL] [Abstract][Full Text] [Related]
9. Design of the Enzyme-Carrier Interface to Overcome the O Benítez-Mateos AI; Huber C; Nidetzky B; Bolivar JM; López-Gallego F ACS Appl Mater Interfaces; 2020 Dec; 12(50):56027-56038. PubMed ID: 33275418 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of the bacterium Leuconostoc mesenteroides with NADH-oxidase function in matrix-supported microcapsules for continuous cofactor regeneration. Ergan F; Thomas D; Chang TM Ann N Y Acad Sci; 1987; 501():372-6. PubMed ID: 3475020 [No Abstract] [Full Text] [Related]
11. Co-immobilization of enoate reductase with a cofactor-recycling partner enzyme. Li H; Xiao W; Xie P; Zheng L Enzyme Microb Technol; 2018 Feb; 109():66-73. PubMed ID: 29224628 [TBL] [Abstract][Full Text] [Related]
12. Selection and microencapsulation of an "NADH-oxidizing" bacterium and its use for NAD regeneration. Ergan F; Thomas D; Chang TM Appl Biochem Biotechnol; 1984; 10():61-71. PubMed ID: 6596908 [TBL] [Abstract][Full Text] [Related]
13. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158 [TBL] [Abstract][Full Text] [Related]
14. Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Talekar S; Pandharbale A; Ladole M; Nadar S; Mulla M; Japhalekar K; Pattankude K; Arage D Bioresour Technol; 2013 Nov; 147():269-275. PubMed ID: 23999260 [TBL] [Abstract][Full Text] [Related]
15. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system. Liu J; Li Z Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic redox cofactor regeneration in organic media: functionalization and application of glycerol dehydrogenase and soluble transhydrogenase in reverse micelles. Ichinose H; Kamiya N; Goto M Biotechnol Prog; 2005; 21(4):1192-7. PubMed ID: 16080701 [TBL] [Abstract][Full Text] [Related]
17. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles. Zheng M; Su Z; Ji X; Ma G; Wang P; Zhang S J Biotechnol; 2013 Oct; 168(2):212-7. PubMed ID: 23756150 [TBL] [Abstract][Full Text] [Related]
18. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production. Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782 [TBL] [Abstract][Full Text] [Related]
19. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. Xiao Z; Lv C; Gao C; Qin J; Ma C; Liu Z; Liu P; Li L; Xu P PLoS One; 2010 Jan; 5(1):e8860. PubMed ID: 20126645 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of Multi-biocatalysts in Alginate Beads for Cofactor Regeneration and Improved Reusability. Gao H; Khera E; Lee JK; Wen F J Vis Exp; 2016 Apr; (110):. PubMed ID: 27166648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]